Graphitic carbon nitride based single-atom photocatalysts

Junwei Fu (傅俊伟), Shuandi Wang (王栓娣), Zihua Wang (王自华), Kang Liu (刘康), Huangjingwei Li (李黄经纬), Hui Liu (刘恢), Junhua Hu (胡俊华), Xiaowen Xu (徐效文), Hongmei Li (李红梅), Min Liu (刘敏)

PDF(3321 KB)
PDF(3321 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (3) : 33201. DOI: 10.1007/s11467-019-0950-z
TOPICAL REVIEW
TOPICAL REVIEW

Graphitic carbon nitride based single-atom photocatalysts

Author information +
History +

Abstract

Single-atom photocatalysts, due to their high catalysis activity, selectivity and stability, become a hotspot in the field of photocatalysis. Graphitic carbon nitride (g-C3N4) is known as both a good support for single atoms and a star photocatalyst. Developing g-C3N4-based single-atom photocatalysts exhibits great potential in improving the photocatalytic performance. In this review, we summarize the recent progress in g-C3N4-based single-atom photocatalysts, mainly including preparation strategies, characterizations, and their photocatalytic applications. The significant roles of single atoms and catalysis mechanism in g-C3N4-based single-atom photocatalysts are analyzed. At last, the challenges and perspectives for exploring high-efficient g-C3N4-based single-atom photocatalysts are presented.

Keywords

graphitic carbon nitride / single atoms / atomically dispersed sites / site-isolated catalysts / photocatalysis

Cite this article

Download citation ▾
Junwei Fu (傅俊伟), Shuandi Wang (王栓娣), Zihua Wang (王自华), Kang Liu (刘康), Huangjingwei Li (李黄经纬), Hui Liu (刘恢), Junhua Hu (胡俊华), Xiaowen Xu (徐效文), Hongmei Li (李红梅), Min Liu (刘敏). Graphitic carbon nitride based single-atom photocatalysts. Front. Phys., 2020, 15(3): 33201 https://doi.org/10.1007/s11467-019-0950-z

References

[1]
L. Jiao and H. L. Jiang, Metal-organic-framework-based single-atom catalysts for energy applications, Chem 5(4), 786 (2019)
CrossRef ADS Google scholar
[2]
A. Liu, K. Liu, H. Zhou, H. Li, X. Qiu, Y. Yang, and M. Liu, Solution evaporation processed high quality perovskite films, Sci. Bull. 63(23), 1591 (2018)
CrossRef ADS Google scholar
[3]
A. Alarawi, V. Ramalingam, and J. H. He, Recent advances in emerging single atom confined two-dimensional materials for water splitting applications, Mater. Today Energy 11, 1 (2019)
CrossRef ADS Google scholar
[4]
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8(1), 76 (2009)
CrossRef ADS Google scholar
[5]
J. Fu, K. Liu, K. Jiang, H. Li, P. An, W. Li, N. Zhang, H. Li, X. Xu, H. Zhou, D. Tang, X. Wang, X. Qiu, and M. Liu, Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4, Adv. Sci. 6(18), 1900796 (2019)
CrossRef ADS Google scholar
[6]
J. Fu, Q. Xu, J. Low, C. Jiang, and J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B 243, 556 (2019)
CrossRef ADS Google scholar
[7]
J. Fu, C. Bie, B. Cheng, C. Jiang, and J. Yu, Hollow CoSx polyhedrons act as high-efficiency cocatalyst for enhancing the photocatalytic hydrogen generation of g-C3N4, ACS Sustain. Chem. & Eng. 6(2), 2767 (2018)
CrossRef ADS Google scholar
[8]
P. Huang, W. Liu, Z. He, C. Xiao, T. Yao, Y. Zou, C. Wang, Z. Qi, W. Tong, B. Pan, S. Wei, and Y. Xie, Single atom accelerates ammonia photosynthesis, Sci. China Chem. 61(9), 1187 (2018)
CrossRef ADS Google scholar
[9]
M. Ou, S. Wan, Q. Zhong, S. Zhang, and Y. Wang, Single Pt atoms deposition on g-C3N4 nanosheets for photocatalytic H2 evolution or NO oxidation under visible light, Int. J. Hydrogen Energy 42(44), 27043 (2017)
CrossRef ADS Google scholar
[10]
C. Ling, X. Niu, Q. Li, A. Du, and J. Wang, Metal-free single atom catalyst for N2 fixation driven by visible light, J. Am. Chem. Soc. 140(43), 14161 (2018)
CrossRef ADS Google scholar
[11]
F. Zeng, W. Q. Huang, J. H. Xiao, Y. Y. Li, W. Peng, W. Hu, K. Li, and G. F. Huang, Isotype heterojunction g-C3N4/g-C3N4 nanosheets as 2D support to highly dispersed 0D metal oxide nanoparticles: Generalized selfassembly and its high photocatalytic activity, J. Phys. D Appl. Phys. 52(2), 025501 (2019)
CrossRef ADS Google scholar
[12]
H. He, J. Li, Y. Liu, Q. Liu, F. Zhan, Y. Li, W. Li, and J. Wen, S-C3N4 quantum dot decorated ZnO nanorods to improve their photoelectrochemical performance, Nano 12(05), 1750064 (2017)
CrossRef ADS Google scholar
[13]
Y. Y. Li, S. F. Ma, B. X. Zhou, W. Q. Huang, X. Fan, X. Li, K. Li, and G. F. Huang, Hydroxy-carbonate-assisted synthesis of high porous graphitic carbon nitride with broken of hydrogen bonds as a highly efficient visiblelight-driven photocatalyst, J. Phys. D Appl. Phys. 52(10), 105502 (2019)
CrossRef ADS Google scholar
[14]
J. Fu, J. Yu, C. Jiang, and B. Cheng, g-C3N4-based heterostructured photocatalysts, Adv. Energy Mater. 8(3), 1701503 (2018)
CrossRef ADS Google scholar
[15]
J. Fu, K. Jiang, X. Qiu, J. Yu, and M. Liu, Product selectivity of photocatalytic CO2 reduction reactions, Mater. Today (2019), doi: 10.1016/j.mattod.2019.06.009 (in press)
CrossRef ADS Google scholar
[16]
Q. Wang, D. Zhang, Y. Chen, W. F. Fu, and X. J. Lv, Single-atom catalysts for photocatalytic reactions, ACS Sustain. Chem. & Eng. 7(7), 6430 (2019)
CrossRef ADS Google scholar
[17]
Y. Zhu, T. Wang, T. Xu, Y. Li, and C. Wang, Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution, Appl. Surf. Sci. 464, 36 (2019)
CrossRef ADS Google scholar
[18]
J. Li, P. Yan, K. Li, J. You, H. Wang, W. Cui, W. Cen, Y. Chu, and F. Dong, Cu supported on polymeric carbon nitride for selective CO2 reduction into CH4: A combined kinetics and thermodynamics investigation, J. Mater. Chem. A Mater. Energy Sustain. 7(28), 17014 (2019)
CrossRef ADS Google scholar
[19]
C. Jin, C. Xu, W. Chang, X. Ma, X. Hu, E. Liu, and J. Fan, Bimetallic phosphide NiCoP anchored g-C3N4 nanosheets for efficient photocatalytic H2 evolution, J. Alloys Compd. 803, 205 (2019)
CrossRef ADS Google scholar
[20]
H. Zhang, X. Han, H. Yu, Y. Zou, and X. Dong, Enhanced photocatalytic performance of boron and phosphorous codoped graphitic carbon nitride nanosheets for removal of organic pollutants, Separ. Purif. Tech. 226, 128 (2019)
CrossRef ADS Google scholar
[21]
J. Li, D. Wu, J. Iocozzia, H. Du, X. Liu, Y. Yuan, W. Zhou, Z. Li, Z. Xue, and Z. Lin, Achieving efficient incorporation of π-electrons into graphitic carbon nitride for markedly improved hydrogen generation, Angew. Chem. Int. Ed. 58(7), 1985 (2019)
CrossRef ADS Google scholar
[22]
Y. Jiang, Z. Sun, C. Tang, Y. Zhou, L. Zeng, and L. Huang, Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition, Appl. Catal. B 240, 30 (2019)
CrossRef ADS Google scholar
[23]
J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
CrossRef ADS Google scholar
[24]
F. Zeng, W. Q. Huang, J. H. Xiao, Y. Y. Li, W. Peng, W. Hu, K. Li, and G. F. Huang, Isotype heterojunction g-C3N4/g-C3N4 nanosheets as 2D support to highly dispersed 0D metal oxide nanoparticles: Generalized selfassembly and its high photocatalytic activity, J. Phys. D: Appl. Phys. 52(2), 025501 (2019)
CrossRef ADS Google scholar
[25]
S. S. Ding, W. Q. Huang, Y. C. Yang, B. X. Zhou, W. Y. Hu, M. Q. Long, P. Peng, and G. F. Huang, Dual role of monolayer MoS2 in enhanced photocatalytic performance of hybrid MoS2/SnO2 nanocomposite, J. Appl. Phys. 119(20), 205704 (2016)
CrossRef ADS Google scholar
[26]
X. Ren, X. Qi, Y. Shen, S. Xiao, G. Xu, Z. Zhang, Z. Huang, and J. Zhong, 2D co-catalytic MoS2 nanosheets embedded with 1D TiO2 nanoparticles for enhancing photocatalytic activity, J. Phys. D Appl. Phys. 49(31), 315304 (2016)
CrossRef ADS Google scholar
[27]
D. Xu, S. Wang, B. Wu, B. Zhang, Y. Qin, C. Huo, L. Huang, X. Wen, Y. Yang, and Y. Li, Highly dispersed single-atom Pt and Pt clusters in the Fe-modified kl zeolite with enhanced selectivity for n-heptane aromatization, ACS Appl. Mater. Inter. 11(33), 29858 (2019)
CrossRef ADS Google scholar
[28]
A. Wang, J. Li, and T. Zhang, Heterogeneous single-atom catalysis, Nat. Rev. Chem. 2(6), 65 (2018)
CrossRef ADS Google scholar
[29]
Z. Chen, E. Vorobyeva, S. Mitchell, E. Fako, N. Lopez, S. M. Collins, R. K. Leary, P. A. Midgley, R. Hauert, and J. Perez-Ramirez, Single-atom heterogeneous catalysts based on distinct carbon nitride scaffolds, Natl. Sci. Rev. 5(5), 642 (2018)
CrossRef ADS Google scholar
[30]
Z. Chen, J. Zhang, S. Zheng, J. Ding, J. Sun, M. Dong, M. Abbas, Y. Chen, Z. Jiang, and J. Chen, The texture evolution of g-C3N4 nanosheets supported Fe catalyst during Fischer-Tropsch synthesis, Mol. Catal. 444, 90 (2018)
CrossRef ADS Google scholar
[31]
J. Di, C. Chen, S. Z. Yang, S. Chen, M. Duan, J. Xiong, C. Zhu, R. Long, W. Hao, Z. Chi, H. Chen, Y. X. Weng, J. Xia, L. Song, S. Li, H. Li, and Z. Liu, Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction, Nat. Commun. 10(1), 2840 (2019)
CrossRef ADS Google scholar
[32]
Z. Ma, J. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)
CrossRef ADS Google scholar
[33]
P. Huang, J. Huang, S. A. Pantovich, A. D. Carl, T. G. Fenton, C. A. Caputo, R. L. Grimm, A. I. Frenkel, and G. Li, Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation, J. Am. Chem. Soc. 140(47), 16042 (2018)
CrossRef ADS Google scholar
[34]
T. He, C. Zhang, L. Zhang, and A. Du, Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline, Nano Res. 12(8), 1817 (2019)
CrossRef ADS Google scholar
[35]
B. C. Gates, M. Flytzani-Stephanopoulos, D. A. Dixon, and A. Katz, Atomically dispersed supported metal catalysts: Perspectives and suggestions for future research, Catal. Sci. Technol. 7(19), 4259 (2017)
CrossRef ADS Google scholar
[36]
J. Liu, Catalysis by supported single metal atoms, ACS Catal. 7(1), 34 (2017)
CrossRef ADS Google scholar
[37]
X. F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, and T. Zhang, Single-atom catalysts: A new frontier in heterogeneous catalysis, Acc. Chem. Res. 46(8), 1740 (2013)
CrossRef ADS Google scholar
[38]
J. Di, J. Xiong, H. Li, and Z. Liu, Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications, Adv. Mater. 30(1), 1704548 (2018)
CrossRef ADS Google scholar
[39]
B. Zhang, T. Fan, N. Xie, G. Nie, and H. Zhang, Versatile applications of metal single-atom@2D material nanoplatforms, Adv. Sci. 6(21), 1901787 (2019)
CrossRef ADS Google scholar
[40]
J. Liu, B. R. Bunes, L. Zang, and C. Wang, Supported single-atom catalysts: synthesis, characterization, properties, and applications, Environ. Chem. Lett. 16(2), 477 (2018)
CrossRef ADS Google scholar
[41]
L. Wang, L. Huang, F. Liang, S. Liu, Y. Wang, and H. Zhang, Preparation, characterization and catalytic performance of single-atom catalysts, Chin. J. Catal. 38(9), 1528 (2017)
CrossRef ADS Google scholar
[42]
S. L. Li, H. Yin, X. Kan, L. Y. Gan, U. Schwingenschlogl, and Y. Zhao, Potential of transition metal atoms embedded in buckled monolayer g-C3N4 as single-atom catalysts, Phys. Chem. Chem. Phys. 19(44), 30069 (2017)
CrossRef ADS Google scholar
[43]
Y. Li, T. Kong, and S. Shen, Artificial photosynthesis with polymeric carbon nitride: When meeting metal nanoparticles, single atoms, and molecular complexes, Small 15(32), 1900772 (2019)
CrossRef ADS Google scholar
[44]
Z. Chen, S. Mitchell, E. Vorobyeva, R. K. Leary, R. Hauert, T. Furnival, Q. M. Ramasse, J. M. Thomas, P. A. Midgley, D. Dontsova, M. Antonietti, S. Pogodin, N. López, and J. Pérez-Ramírez, Stabilization of single metal atoms on graphitic carbon nitride, Adv. Funct. Mater. 27(8), 1605785 (2017)
CrossRef ADS Google scholar
[45]
G. Vilé, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova, M. Antonietti, N. Lopez, and J. Perez-Ramirez, A stable single-site palladium catalyst for hydrogenations, Angew. Chem. Int. Ed. 54(38), 11265 (2015)
CrossRef ADS Google scholar
[46]
S. Tian, Z. Wang, W. Gong, W. Chen, Q. Feng, Q. Xu, C. Chen, C. Chen, Q. Peng, L. Gu, H. Zhao, P. Hu, D. Wang, and Y. Li, Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 catalyst, J. Am. Chem. Soc. 140(36), 11161 (2018)
CrossRef ADS Google scholar
[47]
X. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu, and Y. Xie, Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution, Adv. Mater. 28(12), 2427 (2016)
CrossRef ADS Google scholar
[48]
Z. Chen, Q. Zhang, W. Chen, J. Dong, H. Yao, X. Zhang, X. Tong, D. Wang, Q. Peng, C. Chen, W. He, and Y. Li, Single-site Au-I catalyst for silane oxidation with water, Adv. Mater. 30(5), 1704720 (2018)
CrossRef ADS Google scholar
[49]
L. Liu, H. Su, F. Tang, X. Zhao, and Q. Liu, Confined organometallic Au1Nx single-site as an efficient bifunctional oxygen electrocatalyst, Nano Energy 46, 110 (2018)
CrossRef ADS Google scholar
[50]
Z. Chen, S. Mitchell, F. Krumeich, R. Hauert, S. Yakunin, M. V. Kovalenko, and J. Perez-Ramirez, Tunability and scalability of single-atom catalysts based on carbon nitride, ACS Sustain. Chem. & Eng. 7(5), 5223 (2019)
CrossRef ADS Google scholar
[51]
W. Liu, L. Cao, W. Cheng, Y. Cao, X. Liu, W. Zhang, X. Mou, L. Jin, X. Zheng, W. Che, Q. Liu, T. Yao, and S. Wei, Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting, Angew. Chem. Int. Ed. 56(32), 9312 (2017)
CrossRef ADS Google scholar
[52]
P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu, Y. Tang, J. Lai, Y. Chao, M. Luo, F. Lin, J. Zhou, D. Su, and S. Guo, Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production, Nano Energy 56, 127 (2019)
CrossRef ADS Google scholar
[53]
X. Han, X. Ling, Y. Wang, T. Ma, C. Zhong, W. Hu, and Y. Deng, Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries, Angew. Chem. Int. Ed. 58(16), 5359 (2019)
CrossRef ADS Google scholar
[54]
F. Dubray, S. Moldovan, C. Kouvatas, J. Grand, C. Aquino, N. Barrier, J. P. Gilson, N. Nesterenko, D. Minoux, and S. Mintova, Direct evidence for single molybdenum atoms incorporated in the framework of MFI zeolite nanocrystals, J. Am. Chem. Soc. 141(22), 8689 (2019)
CrossRef ADS Google scholar
[55]
Q. Feng, S. Zhao, Q. Xu, W. Chen, S. Tian, Y. Wang, W. Yan, J. Luo, D. Wang, and Y. Li, Mesoporous nitrogendoped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene, Adv. Mater. 31(36), 1901024 (2019)
CrossRef ADS Google scholar
[56]
H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge, J. Ma, B. Wen, S. Zhang, Q. Li, M. Lei, C. Zhang, J. Irawan, L. M. Liu, and H. Wu, Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth, Nat. Commun. 8(1), 1490 (2017)
CrossRef ADS Google scholar
[57]
P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, and N. Zheng, Photochemical route for synthesizing atomically dispersed palladium catalysts, Science 352(6287), 797 (2016)
CrossRef ADS Google scholar
[58]
Y. Oh, J. O. Hwang, E. S. Lee, M. Yoon, V. D. Le, Y. H. Kim, D. H. Kim, and S. O. Kim, Divalent Fe atom coordination in two-dimensional microporous graphitic carbon nitride, ACS Appl. Mater. Interfaces 8(38), 25438 (2016)
CrossRef ADS Google scholar
[59]
H. Li, Y. Xia, T. Hu, Q. Deng, N. Du, and W. Hou, Enhanced charge carrier separation of manganese(ii)-doped graphitic carbon nitride: Formation of N–Mn bonds through redox reactions, J. Mater. Chem. A Mater. Energy Sustain. 6(15), 6238 (2018)
CrossRef ADS Google scholar
[60]
Z. Chen, S. Pronkin, T. P. Fellinger, K. Kailasam, G. Vile, D. Albani, F. Krumeich, R. Leary, J. Barnard, J. M. Thomas, J. Perez-Ramirez, M. Antonietti, and D. Dontsova, Merging single-atom-dispersed silver and carbon nitride to a joint electronic system via copolymerization with silver tricyanomethanide, ACS Nano 10(3), 3166 (2016)
CrossRef ADS Google scholar
[61]
F. Wang, Y. Wang, Y. Li, X. Cui, Q. Zhang, Z. Xie, H. Liu, Y. Feng, W. Lv, and G. Liu, The facile synthesis of a single atom-dispersed silver-modified ultrathin g-C3N4 hybrid for the enhanced visible-light photocatalytic degradation of sulfamethazine with peroxymonosulfate, Dalton Trans. 47(20), 6924 (2018)
CrossRef ADS Google scholar
[62]
F. Wang, Y. Wang, Y. Feng, Y. Zeng, Z. Xie, Q. Zhang, Y. Su, P. Chen, Y. Liu, K. Yao, W. Lv, and G. Liu, Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen, Appl. Catal. B 221, 510 (2018)
CrossRef ADS Google scholar
[63]
Y. Li, Z. Wang, T. Xia, H. Ju, K. Zhang, R. Long, Q. Xu, C. Wang, L. Song, J. Zhu, J. Jiang, and Y. Xiong, Implementing metal-to-ligand charge transfer in organic semiconductor for improved visible-near-infrared photocatalysis, Adv. Mater. 28(32), 6959 (2016)
CrossRef ADS Google scholar
[64]
Y. Cao, S. Chen, Q. Luo, H. Yan, Y. Lin, W. Liu, L. Cao, J. Lu, J. Yang, T. Yao, and S. Wei, Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1N4 single-site photocatalyst, Angew. Chem. Int. Ed. 56(40), 12191 (2017)
CrossRef ADS Google scholar
[65]
A. Kumar, P. K. Prajapati, M. S. Aathira, A. Bansiwal, R. Boukherroub, and S. L. Jain, Highly improved photoreduction of carbon dioxide to methanol using cobalt phthalocyanine grafted to graphitic carbon nitride as photocatalyst under visible light irradiation, J. Colloid Interface Sci. 543, 201 (2019)
CrossRef ADS Google scholar
[66]
T. Shi, H. Li, L. Ding, F. You, L. Ge, Q. Liu, and K. Wang, Facile preparation of unsubstituted iron(ii) phthalocyanine/carbon nitride nanocomposites: A multipurpose catalyst with reciprocally enhanced photo/electrocatalytic activity, ACS Sustain. Chem. & Eng. 7(3), 3319 (2019)
CrossRef ADS Google scholar
[67]
T. Xu, D. Wang, L. Dong, H. Shen, W. Lu, and W. Chen, Graphitic carbon nitride co-modified by zinc phthalocyanine and graphene quantum dots for the efficient photocatalytic degradation of refractory contaminants, Appl. Catal. B 244, 96 (2019)
CrossRef ADS Google scholar
[68]
T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu, and H. Wang, Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst, Joule 3(1), 265 (2019)
CrossRef ADS Google scholar
[69]
H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu, and C. He, Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol, J. Am. Chem. Soc. 141(32), 12717 (2019)
CrossRef ADS Google scholar
[70]
H. Yang, L. Shang, Q. Zhang, R. Shi, G. I. N. Waterhouse, L. Gu, and T. Zhang, A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts, Nat. Commun. 10(1), 4585 (2019)
CrossRef ADS Google scholar
[71]
K. Jiang, S. Siahrostami, A. J. Akey, Y. Li, Z. Lu, J. Lattimer, Y. Hu, C. Stokes, M. Gangishetty, G. Chen, Y. Zhou, W. Hill, W. B. Cai, D. Bell, K. Chan, J. K. Norskov, Y. Cui, and H. Wang, Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis, Chem 3(6), 950 (2017)
CrossRef ADS Google scholar
[72]
C. Asokan, L. DeRita, and P. Christopher, Using probe molecule FTIR spectroscopy to identify and characterize Pt‐group metal based single atom catalysts, Chin. J. Catal. 38(9), 1473 (2017)
CrossRef ADS Google scholar
[73]
K. Ding, A. Gulec, A. M. Johnson, N. M. Schweitzer, G. D. Stucky, L. D. Marks, and P. C. Stair, Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts., Science 350(6257), 189 (2015) (2015)
CrossRef ADS Google scholar
[74]
Y. Wang, X. Zhao, D. Cao, Y. Wang, and Y. Zhu, Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid, Appl. Catal. B 211, 79 (2017)
CrossRef ADS Google scholar
[75]
L. Liu, X. Wu, L. Wang, X. Xu, L. Gan, Z. Si, J. Li, Q. Zhang, Y. Liu, Y. Zhao, R. Ran, X. Wu, D. Weng, and F. Kang, Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation, Commun. Chem. 2(1), 18 (2019)
CrossRef ADS Google scholar
[76]
G. Wu, S. Hu, Z. Han, C. Liu, and Q. Li, The effect of Ni(i)–N active sites on the photocatalytic H2O2 production ability over nickel doped graphitic carbon nitride nanofibers, New J. Chem. 41(24), 15289 (2017)
CrossRef ADS Google scholar
[77]
Q. Song, J. Li, L. Wang, Y. Qin, L. Pang, and H. Liu, Stable single-atom cobalt as a strong coupling bridge to promote electron transfer and separation in photoelectrocatalysis, J. Catal. 370, 176 (2019)
CrossRef ADS Google scholar
[78]
S. Cao, H. Li, T. Tong, H. C. Chen, A. Yu, J. Yu, and H. M. Chen, Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution, Adv. Funct. Mater. 28(32), 1802169 (2018)
CrossRef ADS Google scholar
[79]
Y. Cao, D. Wang, Y. Lin, W. Liu, L. Cao, X. Liu, W. Zhang, X. Mou, S. Fang, X. Shen, and T. Yao, Single Pt atom with highly vacant d-orbital for accelerating photocatalytic H2 evolution, ACS Appl. Energy Mater. 1(11), 6082 (2018)
CrossRef ADS Google scholar
[80]
T. Tong, B. Zhu, C. Jiang, B. Cheng, and J. Yu, Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4, Appl. Surf. Sci. 433, 1175 (2018)
CrossRef ADS Google scholar
[81]
T. Tong, B. He, B. Zhu, B. Cheng, and L. Zhang, First-principle investigation on charge carrier transfer in transition-metal single atoms loaded g-C3N4, Appl. Surf. Sci. 459, 385 (2018)
CrossRef ADS Google scholar
[82]
H. Li, Y. Wu, L. Li, Y. Gong, L. Niu, X. Liu, T. Wang, C. Sun, and C. Li, Adjustable photocatalytic ability of monolayer g-C3N4 utilizing single-metal atom: Density functional theory, Appl. Surf. Sci. 457, 735 (2018)
CrossRef ADS Google scholar
[83]
G. Gao, Y. Jiao, E. R. Waclawik, and A. Du, Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide, J. Am. Chem. Soc. 138(19), 6292 (2016)
CrossRef ADS Google scholar
[84]
X. Lv, W. Wei, F. Li, B. Huang, and Y. Dai, Metalfree B@g-CN: Visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia, Nano Lett. 19(9), 6391 (2019)
CrossRef ADS Google scholar
[85]
M. M. Millet, G. Algara-Siller, S. Wrabetz, A. Mazheika, F. Girgsdies, D. Teschner, F. Seitz, A. Tarasov, S. V. Levchenko, R. Schlögl, and E. Frei, Ni single atom catalysts for CO2 activation, J. Am. Chem. Soc. 141(6), 2451 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3321 KB)

Accesses

Citations

Detail

Sections
Recommended

/