Implications on the origin of cosmic rays in light of 10 TV spectral softenings
Chuan Yue, Peng-Xiong Ma, Qiang Yuan, Yi-Zhong Fan, Zhan-Fang Chen, Ming-Yang Cui, Hao-Ting Dai, Tie-Kuang Dong, Xiaoyuan Huang, Wei Jiang, Shi-Jun Lei, Xiang Li, Cheng-Ming Liu, Hao Liu, Yang Liu, Chuan-Ning Luo, Xu Pan, Wen-Xi Peng, Rui Qiao, Yi-Feng Wei, Li-Bo Wu, Zhi-Hui Xu, Zun-Lei Xu, Guan-Wen Yuan, Jing-Jing Zang, Ya-Peng Zhang, Yong-Jie Zhang, Yun-Long Zhang
Implications on the origin of cosmic rays in light of 10 TV spectral softenings
Precise measurements of the energy spectra of cosmic rays (CRs) show various kinds of features deviating from single power-laws, which give very interesting and important implications on their origin and propagation. Previous measurements from a few balloon and space experiments indicate the existence of spectral softenings around 10 TV for protons (and probably also for Helium nuclei). Very recently, the DArk Matter Particle Explorer (DAMPE) measurement about the proton spectrum clearly reveals such a softening with a high significance. Here we study the implications of these new measurements, as well as the groundbased indirect measurements, on the origin of CRs. We find that a single component of CRs fails to fit the spectral softening and the air shower experiment data simultaneously. In the framework of multiple components, we discuss two possible scenarios, the multiple source population scenario and the background plus nearby source scenario. Both scenarios give reasonable fits to the wide-band data from TeV to 100 PeV energies. Considering the anisotropy observations, the nearby source model is favored.
[1] |
M. Aguilar,
|
[2] |
A. D. Panov,
CrossRef
ADS
Google scholar
|
[3] |
H. S. Ahn,
CrossRef
ADS
Google scholar
|
[4] |
O. Adriani,
|
[5] |
M. Aguilar,
|
[6] |
M. Aguilar,
|
[7] |
M. Aguilar,
|
[8] |
O. Adriani,
|
[9] |
Y. Ohira and K. Ioka, Cosmic-ray helium hardening, Astrophys. J. 729(1), L13 (2011), arXiv: 1011.4405
CrossRef
ADS
Google scholar
|
[10] |
Q. Yuan, B. Zhang, and X. J. Bi, Cosmic ray spectral hardening due to dispersion in the source injection spectra, Phys. Rev. D 84(4), 043002 (2011), arXiv: 1104.3357
CrossRef
ADS
Google scholar
|
[11] |
A. E. Vladimirov, G. Jóhannesson, I. V. Moskalenko, and T. A. Porter, Testing the origin of high-energy cosmic rays, Astrophys. J. 752(1), 68 (2012), arXiv: 1108.1023
CrossRef
ADS
Google scholar
|
[12] |
A. D. Erlykin and A. W. Wolfendale, A new component of cosmic rays? Astropart. Phys. 35(7), 449 (2012)
CrossRef
ADS
Google scholar
|
[13] |
S. Thoudam and J. R. Hörandel, Nearby supernova remnants and the cosmic ray spectral hardening at high energies, Mon. Not. R. Astron. Soc. 421(2), 1209 (2012), arXiv: 1112.3020
CrossRef
ADS
Google scholar
|
[14] |
G. Bernard, T. Delahaye, Y.-Y. Keum, W. Liu, P. Salati, and R. Taillet, TeV cosmic-ray proton and helium spectra in the myriad model, Astron. Astrophys. 555, A48 (2013), arXiv: 1207.4670
CrossRef
ADS
Google scholar
|
[15] |
W. Liu, X.-J. Bi, S.-J. Lin, B.-B. Wang, and P.- F. Yin, Excesses of cosmic ray spectra from a single nearby source, Phys. Rev. D 96, 023006 (2017), arXiv: 1611.09118
CrossRef
ADS
Google scholar
|
[16] |
V. Ptuskin, V. Zirakashvili, and E. S. Seo, Spectra of cosmic-ray protons and helium produced in supernova remnants, Astrophys. J. 763(1), 47 (2013), arXiv: 1212.0381
CrossRef
ADS
Google scholar
|
[17] |
S. Thoudam and J. R. Hörandel, GeV-TeV cosmic-ray spectral anomaly as due to reacceleration by weak shocks in the galaxy, Astron. Astrophys. 567, A33 (2014), arXiv: 1404.3630
CrossRef
ADS
Google scholar
|
[18] |
Y. Zhang, S. Liu, and Q. Yuan, Anomalous distributions of primary cosmic rays as evidence for time-dependent particle acceleration in Supernova remnants, Astrophys. J. Lett. 844, L3 (2017), arXiv: 1707.00262
CrossRef
ADS
Google scholar
|
[19] |
N. Tomassetti, Origin of the cosmic-ray spectral hardening, Astrophys. J. 752(1), L13 (2012), 1204.4492
CrossRef
ADS
Google scholar
|
[20] |
P. Blasi, E. Amato, and P. D. Serpico, Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy, Phys. Rev. Lett. 109(6), 061101 (2012), 1207.3706
CrossRef
ADS
Google scholar
|
[21] |
N. Tomassetti and F. Donato, The connection between the positron fraction anomaly and the spectral features in galactic cosmic-ray hadrons, Astrophys. J. Lett. 803, L15 (2015), arXiv: 1502.06150
CrossRef
ADS
Google scholar
|
[22] |
A. M. Taylor and G. Giacinti, Cosmic rays in a galactic breeze, Phys. Rev. D 95, 023001 (2017), arXiv: 1607.08862
CrossRef
ADS
Google scholar
|
[23] |
C. Jin, Y. Q. Guo, and H. B. Hu, Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02, Chin. Phys. C 40, 015101 (2016), arXiv: 1504.06903
CrossRef
ADS
Google scholar
|
[24] |
Y. Q. Guo, Z. Tian, and C. Jin, Spatial-dependent propagation of cosmic rays results in spectrum of proton, ratios of $p/p$, B/C and anisotropy of nuclei, Astrophys. J. 819(1), 54 (2016)
CrossRef
ADS
Google scholar
|
[25] |
Y. Q. Guo and Q. Yuan, Understanding the spectral hardenings and radial distribution of galactic cosmic rays and Fermi diffuse gamma-rays with spatially-dependent propagation, Phys. Rev. D 97, 063008 (2018), arXiv: 1801.05904
CrossRef
ADS
Google scholar
|
[26] |
W. Liu, Y. H. Yao, and Y. Q. Guo, Revisiting spatialdependent propagation model with latest observations of cosmic ray nuclei, Astrophys. J. 869, 176 (2018), arXiv: 1802.03602
CrossRef
ADS
Google scholar
|
[27] |
M. Aguilar,
|
[28] |
Y. Génolini,
CrossRef
ADS
Google scholar
|
[29] |
Q. Yuan, C. R. Zhu, X. J. Bi, and D. M. Wei, Secondary cosmic ray nucleus spectra strongly favor reacceleration of particle transport in the Milky Way, arXiv: 1810.03141 (2018)
|
[30] |
J. S. Niu, T. Li, and H. F. Xue, Bayesian analysis of the hardening in AMS-02 nuclei spectra, arXiv: 1810.09301 (2018)
|
[31] |
Y. S. Yoon,
CrossRef
ADS
Google scholar
|
[32] |
E. Atkin,
CrossRef
ADS
Google scholar
|
[33] |
J. Chang, Dark matter particle explorer: The first chinese cosmic ray and hard γ-ray detector in space, Chin. J. Space Sci. (Kongjian Kexue Xuebao)34, 550 (2014)
|
[34] |
J. Chang,
|
[35] |
Q. An,
|
[36] |
T. Antoni,
|
[37] |
E. E. Korosteleva, V. V. Prosin, L. A. Kuzmichev, and G. Navarra, Measurement of cosmic ray primary energy with the atmospheric Cherenkov light technique in extensive air showers, Nucl. Phys. B Proc. Suppl. 165, 74 (2007)
CrossRef
ADS
Google scholar
|
[38] |
M. Amenomori,
|
[39] |
A. P. Garyaka, R. M. Martirosov, S. V. Ter-Antonyan, A. D. Erlykin, N. M. Nikolskaya, Y. A. Gallant, L. W. Jones, and J. Procureur, An all-particle primary energy spectrum in the 3–200 PeV energy range, J. Phys. G Nucl. Phys. 35(11), 115201 (2008), 0808.1421
CrossRef
ADS
Google scholar
|
[40] |
M. Amenomori,
|
[41] |
B. Bartoli,
|
[42] |
J. C. Arteaga-Velazquez and J. D. Alvarez, The spectrum of the light component of TeV cosmic rays measured with HAWC, Proceedings of Science ICRC 2019, 176 (2019)
|
[43] |
W. D. Apel,
|
[44] |
B. Bartoli,
|
[45] |
J. R. Hörandel, On the knee in the energy spectrum of cosmic rays, Astropart. Phys. 19, 193 (2003), arXiv: astro-ph/0210453
CrossRef
ADS
Google scholar
|
[46] |
V. I. Zatsepin and N. V. Sokolskaya, Three component model of cosmic ray spectra from 10 GeV to 100 PeV, Astron. Astrophys. 458(1), 1 (2006), arXiv: astroph/ 0601475
CrossRef
ADS
Google scholar
|
[47] |
A. M. Hillas, Cosmic rays: Recent progress and some current questions, arXiv: astro-ph/0607109 (2006)
|
[48] |
T. K. Gaisser, Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon charge ratio, Astropart. Phys. 35(12), 801 (2012), arXiv: 1111.6675
CrossRef
ADS
Google scholar
|
[49] |
T. K. Gaisser, T. Stanev, and S. Tilav, Cosmic ray energy spectrum from measurements of air showers, Front. Phys. 8(6), 748 (2013), arXiv: 1303.3565
CrossRef
ADS
Google scholar
|
[50] |
S. Thoudam, J. P. Rachen, A. van Vliet, A. Achterberg, S. Buitink, H. Falcke, and J. R. Hörandel, Cosmic-ray energy spectrum and composition up to the ankle- the case for a second Galactic component, Astron. Astrophys. 595, A33 (2016), arXiv: 1605.03111
CrossRef
ADS
Google scholar
|
[51] |
Y. Q. Guo, and Q. Yuan, On the knee of galactic cosmic rays in light of sub-TeV spectral hardenings, Chin. Phys. C 42, 075103 (2018), arXiv: 1701.07136
CrossRef
ADS
Google scholar
|
[52] |
A. D. Erlykin and A. W. Wolfendale, A single source of cosmic rays in the range- eV, J. Phys. G Nucl. Phys. 23(8), 979 (1997)
CrossRef
ADS
Google scholar
|
[53] |
L. G. Sveshnikova, O. N. Strelnikova, and V. S. Ptuskin, Spectrum and anisotropy of cosmic rays at TeV–PeVenergies and contribution of nearby sources, Astropart. Phys. 50, 33 (2013), 1301.2028
CrossRef
ADS
Google scholar
|
[54] |
V. Savchenko, M. Kachelrieβ, and D. V. Semikoz, Imprint of a 2 Myr old source on the cosmic ray anisotropy, Astrophys. J. Lett. 809, L23 (2015), arXiv: 1505.02720
CrossRef
ADS
Google scholar
|
[55] |
W. Liu, Y.-Q. Guo, and Q. Yuan, Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies, J. Cosmol. Astropart. Phys. 10, 010 (2019), arXiv: 1812.09673
CrossRef
ADS
Google scholar
|
[56] |
X. B. Qu, Understanding the galactic cosmic ray dipole anisotropy with a nearby single source under the spatially-dependent propagation scenario, arXiv: 1901.00249 (2019)
|
[57] |
B. Q. Qiao, W. Liu, Y. Q. Guo, and Q. Yuan, Anisotropies of different mass compositions of cosmic rays, J. Cosmol. Astropart. Phys. 12, 007 (2019), arXiv: 1905.12505
CrossRef
ADS
Google scholar
|
[58] |
D. Karmanov, I. Kovalev, I. Kudryashov, A. Kurganov, V. Latonov, A. Panov, D. Podorozhnyy, and A. Turundaevskiy, A possibility of interpretation of the cosmic ray kneenear 10 TV as a contribution of a single close source, arXiv: 1907.05987 (2019)
|
[59] |
Y. S. Yoon,
CrossRef
ADS
Google scholar
|
[60] |
P. Lipari and S. Vernetto, The shape of the cosmic ray proton spectrum, arXiv: 1911.01311 (2019)
|
[61] |
H. S. Ahn,
|
[62] |
M. Aglietta,
CrossRef
ADS
Google scholar
|
[63] |
M. Amenomori,
|
[64] |
M. Aglietta,
CrossRef
ADS
Google scholar
|
[65] |
M. G. Aartsen,
|
[66] |
M. Amenomori,
|
[67] |
X. Bai,
|
[68] |
S. N. Zhang,
|
/
〈 | 〉 |