Implications on the origin of cosmic rays in light of 10 TV spectral softenings

Chuan Yue, Peng-Xiong Ma, Qiang Yuan, Yi-Zhong Fan, Zhan-Fang Chen, Ming-Yang Cui, Hao-Ting Dai, Tie-Kuang Dong, Xiaoyuan Huang, Wei Jiang, Shi-Jun Lei, Xiang Li, Cheng-Ming Liu, Hao Liu, Yang Liu, Chuan-Ning Luo, Xu Pan, Wen-Xi Peng, Rui Qiao, Yi-Feng Wei, Li-Bo Wu, Zhi-Hui Xu, Zun-Lei Xu, Guan-Wen Yuan, Jing-Jing Zang, Ya-Peng Zhang, Yong-Jie Zhang, Yun-Long Zhang

PDF(1825 KB)
PDF(1825 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (2) : 24601. DOI: 10.1007/s11467-019-0946-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Implications on the origin of cosmic rays in light of 10 TV spectral softenings

Author information +
History +

Abstract

Precise measurements of the energy spectra of cosmic rays (CRs) show various kinds of features deviating from single power-laws, which give very interesting and important implications on their origin and propagation. Previous measurements from a few balloon and space experiments indicate the existence of spectral softenings around 10 TV for protons (and probably also for Helium nuclei). Very recently, the DArk Matter Particle Explorer (DAMPE) measurement about the proton spectrum clearly reveals such a softening with a high significance. Here we study the implications of these new measurements, as well as the groundbased indirect measurements, on the origin of CRs. We find that a single component of CRs fails to fit the spectral softening and the air shower experiment data simultaneously. In the framework of multiple components, we discuss two possible scenarios, the multiple source population scenario and the background plus nearby source scenario. Both scenarios give reasonable fits to the wide-band data from TeV to 100 PeV energies. Considering the anisotropy observations, the nearby source model is favored.

Keywords

cosmic rays

Cite this article

Download citation ▾
Chuan Yue, Peng-Xiong Ma, Qiang Yuan, Yi-Zhong Fan, Zhan-Fang Chen, Ming-Yang Cui, Hao-Ting Dai, Tie-Kuang Dong, Xiaoyuan Huang, Wei Jiang, Shi-Jun Lei, Xiang Li, Cheng-Ming Liu, Hao Liu, Yang Liu, Chuan-Ning Luo, Xu Pan, Wen-Xi Peng, Rui Qiao, Yi-Feng Wei, Li-Bo Wu, Zhi-Hui Xu, Zun-Lei Xu, Guan-Wen Yuan, Jing-Jing Zang, Ya-Peng Zhang, Yong-Jie Zhang, Yun-Long Zhang. Implications on the origin of cosmic rays in light of 10 TV spectral softenings. Front. Phys., 2020, 15(2): 24601 https://doi.org/10.1007/s11467-019-0946-8

References

[1]
M. Aguilar, , Precision measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 117(23), 231102 (2016)
[2]
A. D. Panov, , Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results, Bull. Russ. Acad. Sci. Phys. 73(5), 564 (2009), arXiv: 1101.3246
CrossRef ADS Google scholar
[3]
H. S. Ahn, , Discrepant hardening observed in cosmic-ray elemental spectra, Astrophys. J. 714(1), L89 (2010), arXiv: 1004.1123
CrossRef ADS Google scholar
[4]
O. Adriani, , PAMELA measurements of cosmic-ray proton and helium spectra, Science 332(6025), 69 (2011), 1103.4055
[5]
M. Aguilar, , Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 114(17), 171103 (2015)
[6]
M. Aguilar, , Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 115(21), 211101 (2015)
[7]
M. Aguilar, , Observation of the Identical Rigidity Dependence of He, C, and O cosmic rays at high rigidities by the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 119(25), 251101 (2017)
[8]
O. Adriani, , Direct measurement of the cosmicray proton spectrum from 50 GeV to 10 TeV with the calorimetric electron telescope on the international space station, Phys. Rev. Lett. 122, 181102 (2019), arXiv: 1905.04229
[9]
Y. Ohira and K. Ioka, Cosmic-ray helium hardening, Astrophys. J. 729(1), L13 (2011), arXiv: 1011.4405
CrossRef ADS Google scholar
[10]
Q. Yuan, B. Zhang, and X. J. Bi, Cosmic ray spectral hardening due to dispersion in the source injection spectra, Phys. Rev. D 84(4), 043002 (2011), arXiv: 1104.3357
CrossRef ADS Google scholar
[11]
A. E. Vladimirov, G. Jóhannesson, I. V. Moskalenko, and T. A. Porter, Testing the origin of high-energy cosmic rays, Astrophys. J. 752(1), 68 (2012), arXiv: 1108.1023
CrossRef ADS Google scholar
[12]
A. D. Erlykin and A. W. Wolfendale, A new component of cosmic rays? Astropart. Phys. 35(7), 449 (2012)
CrossRef ADS Google scholar
[13]
S. Thoudam and J. R. Hörandel, Nearby supernova remnants and the cosmic ray spectral hardening at high energies, Mon. Not. R. Astron. Soc. 421(2), 1209 (2012), arXiv: 1112.3020
CrossRef ADS Google scholar
[14]
G. Bernard, T. Delahaye, Y.-Y. Keum, W. Liu, P. Salati, and R. Taillet, TeV cosmic-ray proton and helium spectra in the myriad model, Astron. Astrophys. 555, A48 (2013), arXiv: 1207.4670
CrossRef ADS Google scholar
[15]
W. Liu, X.-J. Bi, S.-J. Lin, B.-B. Wang, and P.- F. Yin, Excesses of cosmic ray spectra from a single nearby source, Phys. Rev. D 96, 023006 (2017), arXiv: 1611.09118
CrossRef ADS Google scholar
[16]
V. Ptuskin, V. Zirakashvili, and E. S. Seo, Spectra of cosmic-ray protons and helium produced in supernova remnants, Astrophys. J. 763(1), 47 (2013), arXiv: 1212.0381
CrossRef ADS Google scholar
[17]
S. Thoudam and J. R. Hörandel, GeV-TeV cosmic-ray spectral anomaly as due to reacceleration by weak shocks in the galaxy, Astron. Astrophys. 567, A33 (2014), arXiv: 1404.3630
CrossRef ADS Google scholar
[18]
Y. Zhang, S. Liu, and Q. Yuan, Anomalous distributions of primary cosmic rays as evidence for time-dependent particle acceleration in Supernova remnants, Astrophys. J. Lett. 844, L3 (2017), arXiv: 1707.00262
CrossRef ADS Google scholar
[19]
N. Tomassetti, Origin of the cosmic-ray spectral hardening, Astrophys. J. 752(1), L13 (2012), 1204.4492
CrossRef ADS Google scholar
[20]
P. Blasi, E. Amato, and P. D. Serpico, Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy, Phys. Rev. Lett. 109(6), 061101 (2012), 1207.3706
CrossRef ADS Google scholar
[21]
N. Tomassetti and F. Donato, The connection between the positron fraction anomaly and the spectral features in galactic cosmic-ray hadrons, Astrophys. J. Lett. 803, L15 (2015), arXiv: 1502.06150
CrossRef ADS Google scholar
[22]
A. M. Taylor and G. Giacinti, Cosmic rays in a galactic breeze, Phys. Rev. D 95, 023001 (2017), arXiv: 1607.08862
CrossRef ADS Google scholar
[23]
C. Jin, Y. Q. Guo, and H. B. Hu, Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02, Chin. Phys. C 40, 015101 (2016), arXiv: 1504.06903
CrossRef ADS Google scholar
[24]
Y. Q. Guo, Z. Tian, and C. Jin, Spatial-dependent propagation of cosmic rays results in spectrum of proton, ratios of $p/p$, B/C and anisotropy of nuclei, Astrophys. J. 819(1), 54 (2016)
CrossRef ADS Google scholar
[25]
Y. Q. Guo and Q. Yuan, Understanding the spectral hardenings and radial distribution of galactic cosmic rays and Fermi diffuse gamma-rays with spatially-dependent propagation, Phys. Rev. D 97, 063008 (2018), arXiv: 1801.05904
CrossRef ADS Google scholar
[26]
W. Liu, Y. H. Yao, and Y. Q. Guo, Revisiting spatialdependent propagation model with latest observations of cosmic ray nuclei, Astrophys. J. 869, 176 (2018), arXiv: 1802.03602
CrossRef ADS Google scholar
[27]
M. Aguilar, , Observation of new properties of secondary cosmic rays lithium, beryllium, and boron by the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 120(2), 021101 (2018)
[28]
Y. Génolini, , Indications for a high-rigidity break in the cosmic-ray diffusion coefficient, Phys. Rev. Lett. 119, 241101 (2017), arXiv: 1706.09812
CrossRef ADS Google scholar
[29]
Q. Yuan, C. R. Zhu, X. J. Bi, and D. M. Wei, Secondary cosmic ray nucleus spectra strongly favor reacceleration of particle transport in the Milky Way, arXiv: 1810.03141 (2018)
[30]
J. S. Niu, T. Li, and H. F. Xue, Bayesian analysis of the hardening in AMS-02 nuclei spectra, arXiv: 1810.09301 (2018)
[31]
Y. S. Yoon, , Proton and Helium Spectra from the CREAM-III Flight, Astrophys. J. 839, 5 (2017), arXiv: 1704.02512
CrossRef ADS Google scholar
[32]
E. Atkin, , A new universal cosmic-ray knee near the magnetic rigidity 10 TV with the NUCLEON space observatory, Soviet J. Exp. Theor. Phys. Lett. 108, 5 (2018), arXiv: 1805.07119
CrossRef ADS Google scholar
[33]
J. Chang, Dark matter particle explorer: The first chinese cosmic ray and hard γ-ray detector in space, Chin. J. Space Sci. (Kongjian Kexue Xuebao)34, 550 (2014)
[34]
J. Chang, , The Dark matter particle explorer mission, Astropart. Phys. 95, 6 (2017), arXiv: 1706.08453
[35]
Q. An, , Measurement of the cosmic-ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite, Sci. Adv. 5, eaax3793 (2019), arXiv: 1909.12860
[36]
T. Antoni, (KASCADE Collaboration), KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems, Astropart. Phys. 24, 1 (2005), arXiv: astro-ph/0505413
[37]
E. E. Korosteleva, V. V. Prosin, L. A. Kuzmichev, and G. Navarra, Measurement of cosmic ray primary energy with the atmospheric Cherenkov light technique in extensive air showers, Nucl. Phys. B Proc. Suppl. 165, 74 (2007)
CrossRef ADS Google scholar
[38]
M. Amenomori, , The all-particle spectrum of primary cosmic rays in the wide energy range from 1014 to 1017 eV observed with the Tibet-III air-shower array, Astrophys. J. 678(2), 1165 (2008), 0801.1803
[39]
A. P. Garyaka, R. M. Martirosov, S. V. Ter-Antonyan, A. D. Erlykin, N. M. Nikolskaya, Y. A. Gallant, L. W. Jones, and J. Procureur, An all-particle primary energy spectrum in the 3–200 PeV energy range, J. Phys. G Nucl. Phys. 35(11), 115201 (2008), 0808.1421
CrossRef ADS Google scholar
[40]
M. Amenomori, (Tibet As-gamma Collaboration), Are protons still dominant at the knee of the cosmic-ray energy spectrum? Phys. Lett. B 632, 58 (2006), arXiv: astro-ph/0511469
[41]
B. Bartoli, , The knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO, Phys. Rev. D 92, 092005 (2015), arXiv: 1502.03164
[42]
J. C. Arteaga-Velazquez and J. D. Alvarez, The spectrum of the light component of TeV cosmic rays measured with HAWC, Proceedings of Science ICRC 2019, 176 (2019)
[43]
W. D. Apel, , KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays, Astropart. Phys. 47, 54 (2013)
[44]
B. Bartoli, (ARGO-YBJ Collaboration), The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV, Phys. Rev. D 91, 112017 (2015), arXiv: 1503.07136
[45]
J. R. Hörandel, On the knee in the energy spectrum of cosmic rays, Astropart. Phys. 19, 193 (2003), arXiv: astro-ph/0210453
CrossRef ADS Google scholar
[46]
V. I. Zatsepin and N. V. Sokolskaya, Three component model of cosmic ray spectra from 10 GeV to 100 PeV, Astron. Astrophys. 458(1), 1 (2006), arXiv: astroph/ 0601475
CrossRef ADS Google scholar
[47]
A. M. Hillas, Cosmic rays: Recent progress and some current questions, arXiv: astro-ph/0607109 (2006)
[48]
T. K. Gaisser, Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon charge ratio, Astropart. Phys. 35(12), 801 (2012), arXiv: 1111.6675
CrossRef ADS Google scholar
[49]
T. K. Gaisser, T. Stanev, and S. Tilav, Cosmic ray energy spectrum from measurements of air showers, Front. Phys. 8(6), 748 (2013), arXiv: 1303.3565
CrossRef ADS Google scholar
[50]
S. Thoudam, J. P. Rachen, A. van Vliet, A. Achterberg, S. Buitink, H. Falcke, and J. R. Hörandel, Cosmic-ray energy spectrum and composition up to the ankle- the case for a second Galactic component, Astron. Astrophys. 595, A33 (2016), arXiv: 1605.03111
CrossRef ADS Google scholar
[51]
Y. Q. Guo, and Q. Yuan, On the knee of galactic cosmic rays in light of sub-TeV spectral hardenings, Chin. Phys. C 42, 075103 (2018), arXiv: 1701.07136
CrossRef ADS Google scholar
[52]
A. D. Erlykin and A. W. Wolfendale, A single source of cosmic rays in the range- eV, J. Phys. G Nucl. Phys. 23(8), 979 (1997)
CrossRef ADS Google scholar
[53]
L. G. Sveshnikova, O. N. Strelnikova, and V. S. Ptuskin, Spectrum and anisotropy of cosmic rays at TeV–PeVenergies and contribution of nearby sources, Astropart. Phys. 50, 33 (2013), 1301.2028
CrossRef ADS Google scholar
[54]
V. Savchenko, M. Kachelrieβ, and D. V. Semikoz, Imprint of a 2 Myr old source on the cosmic ray anisotropy, Astrophys. J. Lett. 809, L23 (2015), arXiv: 1505.02720
CrossRef ADS Google scholar
[55]
W. Liu, Y.-Q. Guo, and Q. Yuan, Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies, J. Cosmol. Astropart. Phys. 10, 010 (2019), arXiv: 1812.09673
CrossRef ADS Google scholar
[56]
X. B. Qu, Understanding the galactic cosmic ray dipole anisotropy with a nearby single source under the spatially-dependent propagation scenario, arXiv: 1901.00249 (2019)
[57]
B. Q. Qiao, W. Liu, Y. Q. Guo, and Q. Yuan, Anisotropies of different mass compositions of cosmic rays, J. Cosmol. Astropart. Phys. 12, 007 (2019), arXiv: 1905.12505
CrossRef ADS Google scholar
[58]
D. Karmanov, I. Kovalev, I. Kudryashov, A. Kurganov, V. Latonov, A. Panov, D. Podorozhnyy, and A. Turundaevskiy, A possibility of interpretation of the cosmic ray kneenear 10 TV as a contribution of a single close source, arXiv: 1907.05987 (2019)
[59]
Y. S. Yoon, , Cosmic-ray proton and helium spectra from the first cream flight, Astrophys. J. 728(2), 122 (2011), arXiv: 1102.2575
CrossRef ADS Google scholar
[60]
P. Lipari and S. Vernetto, The shape of the cosmic ray proton spectrum, arXiv: 1911.01311 (2019)
[61]
H. S. Ahn, , Energy spectra of cosmic-ray nuclei at high energies, Astrophys. J. 707(1), 593 (2009), arXiv: 0911.1889
[62]
M. Aglietta, , A measurement of the solar and sidereal cosmic-ray anisotropy at E0 approximately 1014 eV, Astrophys. J. 470, 501 (1996)
CrossRef ADS Google scholar
[63]
M. Amenomori, , Anisotropy and corotation of galactic cosmic rays, Science 314(5798), 439 (2006), arXiv: astro-ph/0610671
[64]
M. Aglietta, , Evolution of the cosmic-ray anisotropy above 1014 eV, Astrophys. J. 692(2), L130 (2009), arXiv: 0901.2740
CrossRef ADS Google scholar
[65]
M. G. Aartsen, (IceCube Collaboration), Anisotropy in cosmic-ray arrival directions in the southern hemisphere with six years of data from the Ice- Cube Detector, Astrophys. J. 826, 220 (2016), arXiv: 1603.01227
[66]
M. Amenomori, (Tibet AS-gamma Collaboration), Northern sky galactic cosmic ray anisotropy between 10- 1000 TeV with the Tibet air shower array, Astrophys. J. 836, 153 (2017), arXiv: 1701.07144
[67]
X. Bai, , The large high altitude air shower observatory (LHAASO) science white paper, arXiv: 1905.02773 (2019)
[68]
S. N. Zhang, (HERD Collaboration), The high energy cosmic-radiation detection (HERD) facility onboard China’s future space station, in: Proc. SPIE 9144, 91440X (2014), arXiv: 1407.4866

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1825 KB)

Accesses

Citations

Detail

Sections
Recommended

/