Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy
Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng
Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy
The phase behavior of water is a topic of perpetual interest due to its remarkable anomalous properties and importance to biology, material science, geoscience, nanoscience, etc. It is predicted confined water at interface can exist in large amounts of crystalline or amorphous states. However, the experimental evidence of coexistence of liquid water phases at interface is still insufficient. Here, a special folding few-layers graphene film was elaborate prepared to form a hydrophobic/hydrophobic interface, which can provide a suited platform to study the structure and properties of confined liquid water. The real-space visualization of intercalated water layers phases at the folding interface is obtained using advanced atomic force microscopy (AFM). The folding graphene interface displays complicated internal interfacial characteristics. The intercalated water molecules present themselves as two phases, lowdensity liquid (LDL, solid-like) and high-density liquid (HDL, liquid-like), according to their specific mechanical properties taken in two multifrequency-AFM (MF-AFM) modes. Furthermore, the water molecules structural evolution is demonstrated in a series of continuous MF-AFM measurements. The work preliminary confirms the existence of two liquid phases of water in real space and will inspire further experimental work to deeply understanding their liquid dynamics behavior.
2D material / interfacial intercalation / coexistence of liquid water phases / multifrequency-AFM / hydrophobic graphene interface
[1] |
F. Perakis, K. Amann-Winkel, F. Lehmkühler, M. Sprung, D. Mariedahl, J. A. Sellberg, H. Pathak, A. Späh, F. Cavalca, D. Schlesinger, A. Ricci, A. Jain, B. Massani, F. Aubree, C. J. Benmore, T. Loerting, G. Grübel, L. G. M. Pettersson, and A. Nilsson, Diffusive dynamics during the high-to-low density transition in amorphous ice, Proc. Natl. Acad. Sci. USA 114(31), 8193 (2017)
CrossRef
ADS
Google scholar
|
[2] |
C. U. Kim, M. W. Tate, and S. M. Gruner, Glassto-cryogenic-liquid transitions in aqueous solutions suggested by crack healing, Proc. Natl. Acad. Sci. USA 112(38), 11765 (2015)
CrossRef
ADS
Google scholar
|
[3] |
C. U. Kim, B. Barstow, M. W. Tate, and S. M. Gruner, Evidence for liquid water during the high-density to lowdensity amorphous ice transition, Proc. Natl. Acad. Sci. USA 106(12), 4596 (2009)
CrossRef
ADS
Google scholar
|
[4] |
P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Phase-behavior of metastable water, Nature 360(6402), 324 (1992)
CrossRef
ADS
Google scholar
|
[5] |
J. C. Palmer, F. Martelli, Y. R. Liu, A. Z. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, Metastable liquid–liquid transition in a molecular model of water, Nature 510(7505), 385 (2014)
CrossRef
ADS
Google scholar
|
[6] |
K. Amann-Winkel, R. Böhmer, F. Fujara, C. Gainaru, B. Geil, and T. Loerting, Water’s controversial glass transitions, Rev. Mod. Phys. 88(1), 011002 (2016)
CrossRef
ADS
Google scholar
|
[7] |
E. O. Rizzatti, M. A. A. Barbosa, and M. C. Barbosa, Core-softened potentials, multiple liquid–liquid critical points, and density anomaly regions: An exact solution, Front. Phys. 13(1), 136102 (2018)
CrossRef
ADS
Google scholar
|
[8] |
O. Mishima, K. Takemura, and K. Aoki, Visual observations of the amorphous-amorphous transition in H2O under pressure, Science 254(5030), 406 (1991)
CrossRef
ADS
Google scholar
|
[9] |
K. Winkel, E. Mayer, and T. Loerting, Equilibrated highdensity amorphous ice and its first-order transition to the low-density form, J. Phys. Chem. B 115(48), 14141 (2011)
CrossRef
ADS
Google scholar
|
[10] |
F. Martelli, H. Y. Ko, C. C. Borallo, and G. Franzese, Structural properties of water confined by phospholipid membranes, Front. Phys. 13(1), 136801 (2018)
CrossRef
ADS
Google scholar
|
[11] |
V. De Michele, G. Romanelli, and A. Cupane, Dynamics of supercooled confined water measured by deep inelastic neutron scattering, Front. Phys. 13(1), 138205 (2018)
CrossRef
ADS
Google scholar
|
[12] |
B. Bhushan, Nanotribology, Nanomechanics, and Materials Characterization, Chapter 28, 2011
CrossRef
ADS
Google scholar
|
[13] |
B. Bhushan, Springer Handbook of Nanotechnology, 2010
CrossRef
ADS
Google scholar
|
[14] |
K. Xu, S. Ye, L. Lei, L. Meng, S. Hussain, Z. Zheng, H. Zeng, W. Ji, R. Xu, and Z. Cheng, Dynamic interfacial mechanical-thermal characteristics of atomically thin two-dimensional crystals, Nanoscale 10(28), 13548 (2018)
CrossRef
ADS
Google scholar
|
[15] |
R. Xu, S. Ye, K. Xu, L. Lei, S. Hussain, Z. Zheng, F. Pang, S. Xing, X. Liu, W. Ji, and Z. Cheng, Nanoscale charge transfer and diffusion at the MoS2/SiO2 interface by atomic force microscopy: contact injection versus triboelectrification, Nanotechnology 29(35), 355701 (2018)
CrossRef
ADS
Google scholar
|
[16] |
R. Garcia and E. T. Herruzo, The emergence of multifrequency force microscopy, Nat. Nanotechnol. 7(4), 217 (2012)
CrossRef
ADS
Google scholar
|
[17] |
R. Garcia, Amplitude Modulation Atomic Force Microscopy, Wiley-VCH Verlag GmbH & Co. KGaA, 2010
CrossRef
ADS
Google scholar
|
[18] |
L. Tetard, A. Passian, and T. Thundat, New modes for subsurface atomic force microscopy through nanomechanical coupling, Nat. Nanotechnol. 5(2), 105 (2010)
CrossRef
ADS
Google scholar
|
[19] |
J. I. Bai and X. C. Zeng, Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure, Proc. Natl. Acad. Sci. USA 109(52), 21240 (2012)
CrossRef
ADS
Google scholar
|
[20] |
W. H. Zhao, L. Wang, J. Bai, L. F. Yuan, J. L. Yang, and X. C. Zeng, Highly confined water: Two-dimensional ice, amorphous ice, and clathrate hydrates, Acc. Chem. Res. 47(8), 2505 (2014)
CrossRef
ADS
Google scholar
|
[21] |
Y. B. Zhu, F. C. Wang, J. I. Bai, X. C. Zeng, and H. A. Wu, Compression limit of two-dimensional water constrained in graphene nanocapillaries, ACS Nano 9(12), 12197 (2015)
CrossRef
ADS
Google scholar
|
[22] |
R. Zangi and A. E. Mark, Monolayer ice, Phys. Rev. Lett. 91(2), 025502 (2003)
CrossRef
ADS
Google scholar
|
[23] |
J. Bai, C. A. Angell, and X. C. Zeng, Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice., Proc. Natl. Acad. Sci. USA 107(13), 5718 (2010)
CrossRef
ADS
Google scholar
|
[24] |
K. Koga, H. Tanaka, and X. C. Zeng, First-order transition in confined water between high-density liquid and low-density amorphous phases, Nature 408(6812), 564 (2000)
CrossRef
ADS
Google scholar
|
[25] |
R. Zangi and A. E. Mark, Bilayer ice and alternate liquid phases of confined water, J. Chem. Phys. 119(3), 1694 (2003)
CrossRef
ADS
Google scholar
|
[26] |
K. Koga, X. C. Zeng, and H. Tanaka, Freezing of confined water: A bilayer ice phase in hydrophobic nanopores, Phys. Rev. Lett. 79(26), 5262 (1997)
CrossRef
ADS
Google scholar
|
[27] |
S. H. Han, M. Y. Choi, P. Kumar, and H. E. Stanley, Phase transitions in confined water nanofilms, Nat. Phys. 6(9), 685 (2010)
CrossRef
ADS
Google scholar
|
[28] |
H. Lee, J. H. Ko, J. S. Choi, J. H. Hwang, Y. H. Kim, M. Salmeron, and J. Y. Park, Enhancement of Friction by Water Intercalated between Graphene and Mica, J. Phys. Chem. Lett. 8(15), 3482 (2017)
CrossRef
ADS
Google scholar
|
[29] |
K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
CrossRef
ADS
Google scholar
|
[30] |
R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
CrossRef
ADS
Google scholar
|
[31] |
S. Hussain, K. Xu, S. Ye, L. Lei, X. Liu, R. Xu, L. Xie, and Z. Cheng, Local electrical characterization of twodimensional materials with functional atomic force microscopy, Front. Phys. 14(3), 33401 (2019)
CrossRef
ADS
Google scholar
|
[32] |
Q. Li, J. Song, F. Besenbacher, and M. D. Dong, Twodimensional material confined water, Acc. Chem. Res. 48(1), 119 (2015)
CrossRef
ADS
Google scholar
|
[33] |
G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, A. K. Geim, and I. V. Grigorieva, Square ice in graphene nanocapillaries, Nature 519(7544), 443 (2015)
CrossRef
ADS
Google scholar
|
[34] |
Y. Zhu, F. Wang, J. Bai, X. C. Zeng, and H. Wu, ABstacked square-like bilayer ice in graphene nanocapillaries, Phys. Chem. Chem. Phys. 18(32), 22039 (2016)
CrossRef
ADS
Google scholar
|
[35] |
J. Chen, G. Schusteritsch, C. J. Pickard, C. G. Salzmann, and A. Michaelides, Two dimensional ice from first principles: Structures and phase transitions, Phys. Rev. Lett. 116(2), 025501 (2016)
CrossRef
ADS
Google scholar
|
[36] |
J. S. Choi, J. S. Kim, I. S. Byun, D. H. Lee, M. J. Lee, B. H. Park, C. Lee, D. Yoon, H. Cheong, K. H. Lee, Y. W. Son, J. Y. Park, and M. Salmeron, Friction anisotropydriven domain imaging on exfoliated monolayer graphene, Science 333(6042), 607 (2011)
CrossRef
ADS
Google scholar
|
[37] |
Z. Zheng, R. Xu, S. Ye, S. Hussain, W. Ji, P. Cheng, Y. Li, Y. Sugawara, and Z. Cheng, High harmonic exploring on different materials in dynamic atomic force microscopy, Sci. China Technol. Sci. 61(3), 452 (2017)
CrossRef
ADS
Google scholar
|
[38] |
K. Xu, Y. Pan, S. Ye, L. Lei, S. Hussain, Q. Wang, Z. Yang, X. Liu, W. Ji, R. Xu, and Z. Cheng, Shear anisotropy-driven crystallographic orientation imaging in flexible hexagonal two-dimensional atomic crystals, Appl. Phys. Lett. 115(6), 063101 (2019)
CrossRef
ADS
Google scholar
|
[39] |
S. Ye, K. Xu, L. Lei, S. Hussain, F. Pang, X. Liu, Z. Zheng, W. Ji, X. Shi, R. Xu, L. Xie, and Z. Cheng, Nanoscratch on single-layer MoS2 crystal by atomic force microscopy: Semi-circular to periodical zigzag cracks, Mater. Res. Express 6(2), 025048 (2018)
CrossRef
ADS
Google scholar
|
[40] |
D. Martinez-Martin, E. T. Herruzo, C. Dietz, J. Gomez-Herrero, and R. Garcia, Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy, Phys. Rev. Lett. 106(19), 198101 (2011)
CrossRef
ADS
Google scholar
|
[41] |
J. R. Lozano and R. Garcia, Theory of phase spectroscopy in bimodal atomic force microscopy, Phys. Rev. B 79(1), 014110 (2009)
CrossRef
ADS
Google scholar
|
[42] |
Y. Li, C. Yu, Y. Gan, P. Jiang, J. Yu, Y. Ou, D. F. Zou, C. Huang, J. Wang, T. Jia, Q. Luo, X. F. Yu, H. Zhao, C. F. Gao, and J. Y. Li, Mapping the elastic properties of twodimensional MoS2 via bimodal atomic force microscopy and finite element simulation, npj Comput. Mater. 4(1), 49 (2018)
CrossRef
ADS
Google scholar
|
[43] |
H. Qiu, X. C. Zeng, and W. Guo, Water in inhomogeneous nanoconfinement: Coexistence of multi layered liquid and transition to ice nanoribbons, ACS Nano 9(10), 9877 (2015)
CrossRef
ADS
Google scholar
|
[44] |
K. Amann-Winkel, C. Gainaru, P. H. Handle, M. Seidl, H. Nelson, R. Bohmer, and T. Loerting, Water’s second glass transition, Proc. Natl. Acad. Sci. USA 110(44), 17720 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |