Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy

Zhi-Yue Zheng , Rui Xu , Kun-Qi Xu , Shi-Li Ye , Fei Pang , Le Lei , Sabir Hussain , Xin-Meng Liu , Wei Ji , Zhi-Hai Cheng

Front. Phys. ›› 2020, Vol. 15 ›› Issue (2) : 23601

PDF (2154KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (2) : 23601 DOI: 10.1007/s11467-019-0933-0
RESEARCH ARTICLE

Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy

Author information +
History +
PDF (2154KB)

Abstract

The phase behavior of water is a topic of perpetual interest due to its remarkable anomalous properties and importance to biology, material science, geoscience, nanoscience, etc. It is predicted confined water at interface can exist in large amounts of crystalline or amorphous states. However, the experimental evidence of coexistence of liquid water phases at interface is still insufficient. Here, a special folding few-layers graphene film was elaborate prepared to form a hydrophobic/hydrophobic interface, which can provide a suited platform to study the structure and properties of confined liquid water. The real-space visualization of intercalated water layers phases at the folding interface is obtained using advanced atomic force microscopy (AFM). The folding graphene interface displays complicated internal interfacial characteristics. The intercalated water molecules present themselves as two phases, lowdensity liquid (LDL, solid-like) and high-density liquid (HDL, liquid-like), according to their specific mechanical properties taken in two multifrequency-AFM (MF-AFM) modes. Furthermore, the water molecules structural evolution is demonstrated in a series of continuous MF-AFM measurements. The work preliminary confirms the existence of two liquid phases of water in real space and will inspire further experimental work to deeply understanding their liquid dynamics behavior.

Keywords

2D material / interfacial intercalation / coexistence of liquid water phases / multifrequency-AFM / hydrophobic graphene interface

Cite this article

Download citation ▾
Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy. Front. Phys., 2020, 15(2): 23601 DOI:10.1007/s11467-019-0933-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Perakis, K. Amann-Winkel, F. Lehmkühler, M. Sprung, D. Mariedahl, J. A. Sellberg, H. Pathak, A. Späh, F. Cavalca, D. Schlesinger, A. Ricci, A. Jain, B. Massani, F. Aubree, C. J. Benmore, T. Loerting, G. Grübel, L. G. M. Pettersson, and A. Nilsson, Diffusive dynamics during the high-to-low density transition in amorphous ice, Proc. Natl. Acad. Sci. USA 114(31), 8193 (2017)

[2]

C. U. Kim, M. W. Tate, and S. M. Gruner, Glassto-cryogenic-liquid transitions in aqueous solutions suggested by crack healing, Proc. Natl. Acad. Sci. USA 112(38), 11765 (2015)

[3]

C. U. Kim, B. Barstow, M. W. Tate, and S. M. Gruner, Evidence for liquid water during the high-density to lowdensity amorphous ice transition, Proc. Natl. Acad. Sci. USA 106(12), 4596 (2009)

[4]

P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Phase-behavior of metastable water, Nature 360(6402), 324 (1992)

[5]

J. C. Palmer, F. Martelli, Y. R. Liu, A. Z. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, Metastable liquid–liquid transition in a molecular model of water, Nature 510(7505), 385 (2014)

[6]

K. Amann-Winkel, R. Böhmer, F. Fujara, C. Gainaru, B. Geil, and T. Loerting, Water’s controversial glass transitions, Rev. Mod. Phys. 88(1), 011002 (2016)

[7]

E. O. Rizzatti, M. A. A. Barbosa, and M. C. Barbosa, Core-softened potentials, multiple liquid–liquid critical points, and density anomaly regions: An exact solution, Front. Phys. 13(1), 136102 (2018)

[8]

O. Mishima, K. Takemura, and K. Aoki, Visual observations of the amorphous-amorphous transition in H2O under pressure, Science 254(5030), 406 (1991)

[9]

K. Winkel, E. Mayer, and T. Loerting, Equilibrated highdensity amorphous ice and its first-order transition to the low-density form, J. Phys. Chem. B 115(48), 14141 (2011)

[10]

F. Martelli, H. Y. Ko, C. C. Borallo, and G. Franzese, Structural properties of water confined by phospholipid membranes, Front. Phys. 13(1), 136801 (2018)

[11]

V. De Michele, G. Romanelli, and A. Cupane, Dynamics of supercooled confined water measured by deep inelastic neutron scattering, Front. Phys. 13(1), 138205 (2018)

[12]

B. Bhushan, Nanotribology, Nanomechanics, and Materials Characterization, Chapter 28, 2011

[13]

B. Bhushan, Springer Handbook of Nanotechnology, 2010

[14]

K. Xu, S. Ye, L. Lei, L. Meng, S. Hussain, Z. Zheng, H. Zeng, W. Ji, R. Xu, and Z. Cheng, Dynamic interfacial mechanical-thermal characteristics of atomically thin two-dimensional crystals, Nanoscale 10(28), 13548 (2018)

[15]

R. Xu, S. Ye, K. Xu, L. Lei, S. Hussain, Z. Zheng, F. Pang, S. Xing, X. Liu, W. Ji, and Z. Cheng, Nanoscale charge transfer and diffusion at the MoS2/SiO2 interface by atomic force microscopy: contact injection versus triboelectrification, Nanotechnology 29(35), 355701 (2018)

[16]

R. Garcia and E. T. Herruzo, The emergence of multifrequency force microscopy, Nat. Nanotechnol. 7(4), 217 (2012)

[17]

R. Garcia, Amplitude Modulation Atomic Force Microscopy, Wiley-VCH Verlag GmbH & Co. KGaA, 2010

[18]

L. Tetard, A. Passian, and T. Thundat, New modes for subsurface atomic force microscopy through nanomechanical coupling, Nat. Nanotechnol. 5(2), 105 (2010)

[19]

J. I. Bai and X. C. Zeng, Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure, Proc. Natl. Acad. Sci. USA 109(52), 21240 (2012)

[20]

W. H. Zhao, L. Wang, J. Bai, L. F. Yuan, J. L. Yang, and X. C. Zeng, Highly confined water: Two-dimensional ice, amorphous ice, and clathrate hydrates, Acc. Chem. Res. 47(8), 2505 (2014)

[21]

Y. B. Zhu, F. C. Wang, J. I. Bai, X. C. Zeng, and H. A. Wu, Compression limit of two-dimensional water constrained in graphene nanocapillaries, ACS Nano 9(12), 12197 (2015)

[22]

R. Zangi and A. E. Mark, Monolayer ice, Phys. Rev. Lett. 91(2), 025502 (2003)

[23]

J. Bai, C. A. Angell, and X. C. Zeng, Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice., Proc. Natl. Acad. Sci. USA 107(13), 5718 (2010)

[24]

K. Koga, H. Tanaka, and X. C. Zeng, First-order transition in confined water between high-density liquid and low-density amorphous phases, Nature 408(6812), 564 (2000)

[25]

R. Zangi and A. E. Mark, Bilayer ice and alternate liquid phases of confined water, J. Chem. Phys. 119(3), 1694 (2003)

[26]

K. Koga, X. C. Zeng, and H. Tanaka, Freezing of confined water: A bilayer ice phase in hydrophobic nanopores, Phys. Rev. Lett. 79(26), 5262 (1997)

[27]

S. H. Han, M. Y. Choi, P. Kumar, and H. E. Stanley, Phase transitions in confined water nanofilms, Nat. Phys. 6(9), 685 (2010)

[28]

H. Lee, J. H. Ko, J. S. Choi, J. H. Hwang, Y. H. Kim, M. Salmeron, and J. Y. Park, Enhancement of Friction by Water Intercalated between Graphene and Mica, J. Phys. Chem. Lett. 8(15), 3482 (2017)

[29]

K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)

[30]

R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)

[31]

S. Hussain, K. Xu, S. Ye, L. Lei, X. Liu, R. Xu, L. Xie, and Z. Cheng, Local electrical characterization of twodimensional materials with functional atomic force microscopy, Front. Phys. 14(3), 33401 (2019)

[32]

Q. Li, J. Song, F. Besenbacher, and M. D. Dong, Twodimensional material confined water, Acc. Chem. Res. 48(1), 119 (2015)

[33]

G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, A. K. Geim, and I. V. Grigorieva, Square ice in graphene nanocapillaries, Nature 519(7544), 443 (2015)

[34]

Y. Zhu, F. Wang, J. Bai, X. C. Zeng, and H. Wu, ABstacked square-like bilayer ice in graphene nanocapillaries, Phys. Chem. Chem. Phys. 18(32), 22039 (2016)

[35]

J. Chen, G. Schusteritsch, C. J. Pickard, C. G. Salzmann, and A. Michaelides, Two dimensional ice from first principles: Structures and phase transitions, Phys. Rev. Lett. 116(2), 025501 (2016)

[36]

J. S. Choi, J. S. Kim, I. S. Byun, D. H. Lee, M. J. Lee, B. H. Park, C. Lee, D. Yoon, H. Cheong, K. H. Lee, Y. W. Son, J. Y. Park, and M. Salmeron, Friction anisotropydriven domain imaging on exfoliated monolayer graphene, Science 333(6042), 607 (2011)

[37]

Z. Zheng, R. Xu, S. Ye, S. Hussain, W. Ji, P. Cheng, Y. Li, Y. Sugawara, and Z. Cheng, High harmonic exploring on different materials in dynamic atomic force microscopy, Sci. China Technol. Sci. 61(3), 452 (2017)

[38]

K. Xu, Y. Pan, S. Ye, L. Lei, S. Hussain, Q. Wang, Z. Yang, X. Liu, W. Ji, R. Xu, and Z. Cheng, Shear anisotropy-driven crystallographic orientation imaging in flexible hexagonal two-dimensional atomic crystals, Appl. Phys. Lett. 115(6), 063101 (2019)

[39]

S. Ye, K. Xu, L. Lei, S. Hussain, F. Pang, X. Liu, Z. Zheng, W. Ji, X. Shi, R. Xu, L. Xie, and Z. Cheng, Nanoscratch on single-layer MoS2 crystal by atomic force microscopy: Semi-circular to periodical zigzag cracks, Mater. Res. Express 6(2), 025048 (2018)

[40]

D. Martinez-Martin, E. T. Herruzo, C. Dietz, J. Gomez-Herrero, and R. Garcia, Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy, Phys. Rev. Lett. 106(19), 198101 (2011)

[41]

J. R. Lozano and R. Garcia, Theory of phase spectroscopy in bimodal atomic force microscopy, Phys. Rev. B 79(1), 014110 (2009)

[42]

Y. Li, C. Yu, Y. Gan, P. Jiang, J. Yu, Y. Ou, D. F. Zou, C. Huang, J. Wang, T. Jia, Q. Luo, X. F. Yu, H. Zhao, C. F. Gao, and J. Y. Li, Mapping the elastic properties of twodimensional MoS2 via bimodal atomic force microscopy and finite element simulation, npj Comput. Mater. 4(1), 49 (2018)

[43]

H. Qiu, X. C. Zeng, and W. Guo, Water in inhomogeneous nanoconfinement: Coexistence of multi layered liquid and transition to ice nanoribbons, ACS Nano 9(10), 9877 (2015)

[44]

K. Amann-Winkel, C. Gainaru, P. H. Handle, M. Seidl, H. Nelson, R. Bohmer, and T. Loerting, Water’s second glass transition, Proc. Natl. Acad. Sci. USA 110(44), 17720 (2013)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2154KB)

937

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/