Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy

Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng

PDF(2154 KB)
PDF(2154 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (2) : 23601. DOI: 10.1007/s11467-019-0933-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy

Author information +
History +

Abstract

The phase behavior of water is a topic of perpetual interest due to its remarkable anomalous properties and importance to biology, material science, geoscience, nanoscience, etc. It is predicted confined water at interface can exist in large amounts of crystalline or amorphous states. However, the experimental evidence of coexistence of liquid water phases at interface is still insufficient. Here, a special folding few-layers graphene film was elaborate prepared to form a hydrophobic/hydrophobic interface, which can provide a suited platform to study the structure and properties of confined liquid water. The real-space visualization of intercalated water layers phases at the folding interface is obtained using advanced atomic force microscopy (AFM). The folding graphene interface displays complicated internal interfacial characteristics. The intercalated water molecules present themselves as two phases, lowdensity liquid (LDL, solid-like) and high-density liquid (HDL, liquid-like), according to their specific mechanical properties taken in two multifrequency-AFM (MF-AFM) modes. Furthermore, the water molecules structural evolution is demonstrated in a series of continuous MF-AFM measurements. The work preliminary confirms the existence of two liquid phases of water in real space and will inspire further experimental work to deeply understanding their liquid dynamics behavior.

Keywords

2D material / interfacial intercalation / coexistence of liquid water phases / multifrequency-AFM / hydrophobic graphene interface

Cite this article

Download citation ▾
Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy. Front. Phys., 2020, 15(2): 23601 https://doi.org/10.1007/s11467-019-0933-0

References

[1]
F. Perakis, K. Amann-Winkel, F. Lehmkühler, M. Sprung, D. Mariedahl, J. A. Sellberg, H. Pathak, A. Späh, F. Cavalca, D. Schlesinger, A. Ricci, A. Jain, B. Massani, F. Aubree, C. J. Benmore, T. Loerting, G. Grübel, L. G. M. Pettersson, and A. Nilsson, Diffusive dynamics during the high-to-low density transition in amorphous ice, Proc. Natl. Acad. Sci. USA 114(31), 8193 (2017)
CrossRef ADS Google scholar
[2]
C. U. Kim, M. W. Tate, and S. M. Gruner, Glassto-cryogenic-liquid transitions in aqueous solutions suggested by crack healing, Proc. Natl. Acad. Sci. USA 112(38), 11765 (2015)
CrossRef ADS Google scholar
[3]
C. U. Kim, B. Barstow, M. W. Tate, and S. M. Gruner, Evidence for liquid water during the high-density to lowdensity amorphous ice transition, Proc. Natl. Acad. Sci. USA 106(12), 4596 (2009)
CrossRef ADS Google scholar
[4]
P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Phase-behavior of metastable water, Nature 360(6402), 324 (1992)
CrossRef ADS Google scholar
[5]
J. C. Palmer, F. Martelli, Y. R. Liu, A. Z. Car, A. Z. Panagiotopoulos, and P. G. Debenedetti, Metastable liquid–liquid transition in a molecular model of water, Nature 510(7505), 385 (2014)
CrossRef ADS Google scholar
[6]
K. Amann-Winkel, R. Böhmer, F. Fujara, C. Gainaru, B. Geil, and T. Loerting, Water’s controversial glass transitions, Rev. Mod. Phys. 88(1), 011002 (2016)
CrossRef ADS Google scholar
[7]
E. O. Rizzatti, M. A. A. Barbosa, and M. C. Barbosa, Core-softened potentials, multiple liquid–liquid critical points, and density anomaly regions: An exact solution, Front. Phys. 13(1), 136102 (2018)
CrossRef ADS Google scholar
[8]
O. Mishima, K. Takemura, and K. Aoki, Visual observations of the amorphous-amorphous transition in H2O under pressure, Science 254(5030), 406 (1991)
CrossRef ADS Google scholar
[9]
K. Winkel, E. Mayer, and T. Loerting, Equilibrated highdensity amorphous ice and its first-order transition to the low-density form, J. Phys. Chem. B 115(48), 14141 (2011)
CrossRef ADS Google scholar
[10]
F. Martelli, H. Y. Ko, C. C. Borallo, and G. Franzese, Structural properties of water confined by phospholipid membranes, Front. Phys. 13(1), 136801 (2018)
CrossRef ADS Google scholar
[11]
V. De Michele, G. Romanelli, and A. Cupane, Dynamics of supercooled confined water measured by deep inelastic neutron scattering, Front. Phys. 13(1), 138205 (2018)
CrossRef ADS Google scholar
[12]
B. Bhushan, Nanotribology, Nanomechanics, and Materials Characterization, Chapter 28, 2011
CrossRef ADS Google scholar
[13]
B. Bhushan, Springer Handbook of Nanotechnology, 2010
CrossRef ADS Google scholar
[14]
K. Xu, S. Ye, L. Lei, L. Meng, S. Hussain, Z. Zheng, H. Zeng, W. Ji, R. Xu, and Z. Cheng, Dynamic interfacial mechanical-thermal characteristics of atomically thin two-dimensional crystals, Nanoscale 10(28), 13548 (2018)
CrossRef ADS Google scholar
[15]
R. Xu, S. Ye, K. Xu, L. Lei, S. Hussain, Z. Zheng, F. Pang, S. Xing, X. Liu, W. Ji, and Z. Cheng, Nanoscale charge transfer and diffusion at the MoS2/SiO2 interface by atomic force microscopy: contact injection versus triboelectrification, Nanotechnology 29(35), 355701 (2018)
CrossRef ADS Google scholar
[16]
R. Garcia and E. T. Herruzo, The emergence of multifrequency force microscopy, Nat. Nanotechnol. 7(4), 217 (2012)
CrossRef ADS Google scholar
[17]
R. Garcia, Amplitude Modulation Atomic Force Microscopy, Wiley-VCH Verlag GmbH & Co. KGaA, 2010
CrossRef ADS Google scholar
[18]
L. Tetard, A. Passian, and T. Thundat, New modes for subsurface atomic force microscopy through nanomechanical coupling, Nat. Nanotechnol. 5(2), 105 (2010)
CrossRef ADS Google scholar
[19]
J. I. Bai and X. C. Zeng, Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure, Proc. Natl. Acad. Sci. USA 109(52), 21240 (2012)
CrossRef ADS Google scholar
[20]
W. H. Zhao, L. Wang, J. Bai, L. F. Yuan, J. L. Yang, and X. C. Zeng, Highly confined water: Two-dimensional ice, amorphous ice, and clathrate hydrates, Acc. Chem. Res. 47(8), 2505 (2014)
CrossRef ADS Google scholar
[21]
Y. B. Zhu, F. C. Wang, J. I. Bai, X. C. Zeng, and H. A. Wu, Compression limit of two-dimensional water constrained in graphene nanocapillaries, ACS Nano 9(12), 12197 (2015)
CrossRef ADS Google scholar
[22]
R. Zangi and A. E. Mark, Monolayer ice, Phys. Rev. Lett. 91(2), 025502 (2003)
CrossRef ADS Google scholar
[23]
J. Bai, C. A. Angell, and X. C. Zeng, Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice., Proc. Natl. Acad. Sci. USA 107(13), 5718 (2010)
CrossRef ADS Google scholar
[24]
K. Koga, H. Tanaka, and X. C. Zeng, First-order transition in confined water between high-density liquid and low-density amorphous phases, Nature 408(6812), 564 (2000)
CrossRef ADS Google scholar
[25]
R. Zangi and A. E. Mark, Bilayer ice and alternate liquid phases of confined water, J. Chem. Phys. 119(3), 1694 (2003)
CrossRef ADS Google scholar
[26]
K. Koga, X. C. Zeng, and H. Tanaka, Freezing of confined water: A bilayer ice phase in hydrophobic nanopores, Phys. Rev. Lett. 79(26), 5262 (1997)
CrossRef ADS Google scholar
[27]
S. H. Han, M. Y. Choi, P. Kumar, and H. E. Stanley, Phase transitions in confined water nanofilms, Nat. Phys. 6(9), 685 (2010)
CrossRef ADS Google scholar
[28]
H. Lee, J. H. Ko, J. S. Choi, J. H. Hwang, Y. H. Kim, M. Salmeron, and J. Y. Park, Enhancement of Friction by Water Intercalated between Graphene and Mica, J. Phys. Chem. Lett. 8(15), 3482 (2017)
CrossRef ADS Google scholar
[29]
K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
CrossRef ADS Google scholar
[30]
R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
CrossRef ADS Google scholar
[31]
S. Hussain, K. Xu, S. Ye, L. Lei, X. Liu, R. Xu, L. Xie, and Z. Cheng, Local electrical characterization of twodimensional materials with functional atomic force microscopy, Front. Phys. 14(3), 33401 (2019)
CrossRef ADS Google scholar
[32]
Q. Li, J. Song, F. Besenbacher, and M. D. Dong, Twodimensional material confined water, Acc. Chem. Res. 48(1), 119 (2015)
CrossRef ADS Google scholar
[33]
G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, A. K. Geim, and I. V. Grigorieva, Square ice in graphene nanocapillaries, Nature 519(7544), 443 (2015)
CrossRef ADS Google scholar
[34]
Y. Zhu, F. Wang, J. Bai, X. C. Zeng, and H. Wu, ABstacked square-like bilayer ice in graphene nanocapillaries, Phys. Chem. Chem. Phys. 18(32), 22039 (2016)
CrossRef ADS Google scholar
[35]
J. Chen, G. Schusteritsch, C. J. Pickard, C. G. Salzmann, and A. Michaelides, Two dimensional ice from first principles: Structures and phase transitions, Phys. Rev. Lett. 116(2), 025501 (2016)
CrossRef ADS Google scholar
[36]
J. S. Choi, J. S. Kim, I. S. Byun, D. H. Lee, M. J. Lee, B. H. Park, C. Lee, D. Yoon, H. Cheong, K. H. Lee, Y. W. Son, J. Y. Park, and M. Salmeron, Friction anisotropydriven domain imaging on exfoliated monolayer graphene, Science 333(6042), 607 (2011)
CrossRef ADS Google scholar
[37]
Z. Zheng, R. Xu, S. Ye, S. Hussain, W. Ji, P. Cheng, Y. Li, Y. Sugawara, and Z. Cheng, High harmonic exploring on different materials in dynamic atomic force microscopy, Sci. China Technol. Sci. 61(3), 452 (2017)
CrossRef ADS Google scholar
[38]
K. Xu, Y. Pan, S. Ye, L. Lei, S. Hussain, Q. Wang, Z. Yang, X. Liu, W. Ji, R. Xu, and Z. Cheng, Shear anisotropy-driven crystallographic orientation imaging in flexible hexagonal two-dimensional atomic crystals, Appl. Phys. Lett. 115(6), 063101 (2019)
CrossRef ADS Google scholar
[39]
S. Ye, K. Xu, L. Lei, S. Hussain, F. Pang, X. Liu, Z. Zheng, W. Ji, X. Shi, R. Xu, L. Xie, and Z. Cheng, Nanoscratch on single-layer MoS2 crystal by atomic force microscopy: Semi-circular to periodical zigzag cracks, Mater. Res. Express 6(2), 025048 (2018)
CrossRef ADS Google scholar
[40]
D. Martinez-Martin, E. T. Herruzo, C. Dietz, J. Gomez-Herrero, and R. Garcia, Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy, Phys. Rev. Lett. 106(19), 198101 (2011)
CrossRef ADS Google scholar
[41]
J. R. Lozano and R. Garcia, Theory of phase spectroscopy in bimodal atomic force microscopy, Phys. Rev. B 79(1), 014110 (2009)
CrossRef ADS Google scholar
[42]
Y. Li, C. Yu, Y. Gan, P. Jiang, J. Yu, Y. Ou, D. F. Zou, C. Huang, J. Wang, T. Jia, Q. Luo, X. F. Yu, H. Zhao, C. F. Gao, and J. Y. Li, Mapping the elastic properties of twodimensional MoS2 via bimodal atomic force microscopy and finite element simulation, npj Comput. Mater. 4(1), 49 (2018)
CrossRef ADS Google scholar
[43]
H. Qiu, X. C. Zeng, and W. Guo, Water in inhomogeneous nanoconfinement: Coexistence of multi layered liquid and transition to ice nanoribbons, ACS Nano 9(10), 9877 (2015)
CrossRef ADS Google scholar
[44]
K. Amann-Winkel, C. Gainaru, P. H. Handle, M. Seidl, H. Nelson, R. Bohmer, and T. Loerting, Water’s second glass transition, Proc. Natl. Acad. Sci. USA 110(44), 17720 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2154 KB)

Accesses

Citations

Detail

Sections
Recommended

/