Controllable electromagnetically induced grating in a cascade-type atomic system

Jin-Peng Yuan, Chao-Hua Wu, Yi-Hong Li, Li-Rong Wang, Yun Zhang, Lian-Tuan Xiao, Suo-Tang Jia

PDF(2409 KB)
PDF(2409 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (5) : 52603. DOI: 10.1007/s11467-019-0924-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Controllable electromagnetically induced grating in a cascade-type atomic system

Author information +
History +

Abstract

A controllable electromagnetically induced grating (EIG) is experimentally realized in a coherent rubidium ensemble with 5S1/2–5P3/2–5D5/2 cascade configuration. In our work, a whole picture describing the relation between the first-order diffraction efficiency and the power of the coupling field is experimentally presented for the first time, which agrees well with the theoretical prediction. More important, by fine tuning the experimental parameters, the first-order diffraction efficiency of as high as 25% can be achieved and a clear three-order diffraction pattern is also observed. Such a controllable periodic structure can provide a powerful tool for studying the control of light dynamics, pave the way for realizing new optical device.

Keywords

coherent optical effects / diffraction gratings / multiphoton processes

Cite this article

Download citation ▾
Jin-Peng Yuan, Chao-Hua Wu, Yi-Hong Li, Li-Rong Wang, Yun Zhang, Lian-Tuan Xiao, Suo-Tang Jia. Controllable electromagnetically induced grating in a cascade-type atomic system. Front. Phys., 2019, 14(5): 52603 https://doi.org/10.1007/s11467-019-0924-1

References

[1]
S. E. Harris, Electromagnetically induced transparency, Phys. Today 50(7), 36 (1997)
CrossRef ADS Google scholar
[2]
M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)
CrossRef ADS Google scholar
[3]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas, Nature 397(6720), 594 (1999)
CrossRef ADS Google scholar
[4]
J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid, Phys. Rev. Lett. 95(6), 063601 (2005)
CrossRef ADS Google scholar
[5]
Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, Long lifetime and highfidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy, Phys. Rev. Lett. 111(24), 240503 (2013)
CrossRef ADS Google scholar
[6]
Z. Wu, K. Chang, Y. Hu, Y. Zhang, Z. Jiang, and Y. Zhang, Modulation of four-wave mixing via photonic band gap, Front. Phys. 9(5), 665 (2014)
CrossRef ADS Google scholar
[7]
H. Ling, Y. Q. Li, and M. Xiao, Electromagnetically induced grating: Homogeneously broadened medium, Phys. Rev. A 57(2), 1338 (1998)
CrossRef ADS Google scholar
[8]
F. Bozorgzadeh, M. Sahrai, and H. Khoshsima, Controlling the electromagnetically induced grating via spontaneously generated coherence, Eur. Phys. J. D 70(9), 191 (2016)
CrossRef ADS Google scholar
[9]
A. W. Brown and M. Xiao, All-optical switching and routing based on an electromagnetically induced absorption grating, Opt. Lett. 30(7), 699 (2005)
CrossRef ADS Google scholar
[10]
A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Nonlinear optics with stationary pulses of light, Phys. Rev. Lett. 94(6), 063902 (2005)
CrossRef ADS Google scholar
[11]
D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, Dynamics of a stored Zeeman coherence grating in an external magnetic field, J. Phys. At. Mol. Opt. Phys. 43(11), 115502 (2010)
CrossRef ADS Google scholar
[12]
L. E. de Araujo, Electromagnetically induced phase grating, Opt. Lett. 35(7), 977 (2010)
CrossRef ADS Google scholar
[13]
M. Gao, Z. Wang, Z. Ullah, H. Chen, D. Zhang, Y. Zhang, and Y. Zhang, Modulated photonic band gaps generated by high-order wave mixing, J. Opt. Soc. Am. B 32(1), 179 (2015)
CrossRef ADS Google scholar
[14]
J. Tabosa, A. Lezama, and G. Cardoso, Transient Bragg diffraction by a transferred population grating: application for cold atoms velocimetry, Opt. Commun. 165(1–3), 59 (1999)
CrossRef ADS Google scholar
[15]
P. W. Zhai, X. M. Su, and J. Y. Gao, Optical bistability in electromagnetically induced grating, Phys. Lett. A 289(1–2), 27 (2001)
CrossRef ADS Google scholar
[16]
L. Zhao, W. Duan, and S. F. Yelin, All-optical beam control with high speed using image-induced blazed gratings in coherent media, Phys. Rev. A 82(1), 013809 (2010)
CrossRef ADS Google scholar
[17]
J. Wen, Y. Zhai, S. Du, and M. Xiao, Engineering biphoton wave packets with an electromagnetically induced grating, Phys. Rev. A 82(4), 043814 (2010)
CrossRef ADS Google scholar
[18]
M. Mitsunaga and N. Imoto, Observation of an electromagnetically induced grating in cold sodium atoms, Phys. Rev. A 59(6), 4773 (1999)
CrossRef ADS Google scholar
[19]
J. Sheng, J. Wang, M. A. Miri, D. N. Christodoulides, and M. Xiao, Observation of discrete diffraction patterns in an optically induced lattice, Opt. Express 23(15), 19777 (2015)
CrossRef ADS Google scholar
[20]
J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, Experimental study of discrete diffraction behavior in a coherent atomic system, Laser Phys. Lett. 14(12), 125206 (2017)
CrossRef ADS Google scholar
[21]
B. K. Dutta and P. K. Mahapatra, Electromagnetically induced grating in a three-level X-type system driven by a strong standing wave pump and weak probe fields, J. Phys. At. Mol. Opt. Phys. 39(5), 1145 (2006)
CrossRef ADS Google scholar
[22]
R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence, Phys. Rev. A 83(3), 033824 (2011)
CrossRef ADS Google scholar
[23]
F. Zhou, Y. Qi, H. Sun, D. Chen, J. Yang, Y. Niu, and S. Gong, Electromagnetically induced grating in asymmetric quantum wells via Fano interference, Opt. Express 21(10), 12249 (2013)
CrossRef ADS Google scholar
[24]
Z. H. Xiao, L. Zheng, and H. Lin, Photoinduced diffraction grating in hybrid artificial molecule, Opt. Express 20(2), 1219 (2012)
CrossRef ADS Google scholar
[25]
S. Kuang, C. Jin, and C. Li, Gain-phase grating based on spatial modulation of active Raman gain in cold atoms, Phys. Rev. A 84(3), 033831 (2011)
CrossRef ADS Google scholar
[26]
L. Wang, F. Zhou, P. Hu, Y. Niu, and S. Gong, Twodimensional electromagnetically induced cross-grating in a four-level tripod-type atomic system, J. Phys. At. Mol. Opt. Phys. 47(22), 225501 (2014)
CrossRef ADS Google scholar
[27]
A. Vafafard and M. Sahrai, Electromagnetically induced grating based on Zeeman coherence oscillations in cases beyond the multi-photon resonance condition, J. Opt. Soc. Am. B 35(9), 2118 (2018)
CrossRef ADS Google scholar
[28]
T. Naseri and R. Sadighi-Bonabi, Electromagnetically induced phase grating via population trapping condition in a microwave-driven four-level atomic system, J. Opt. Soc. Am. B 31(11), 2879 (2014)
CrossRef ADS Google scholar
[29]
T. Naseri and R. Sadighi-Bonabi, Efficient electromagetically induced phase grating via quantum interference in a four-level n-type atomic system, J. Opt. Soc. Am. B 31(10), 2430 (2014)
CrossRef ADS Google scholar
[30]
A. Vafafard and M. Mahmoudi, Switching from electromagnetically induced absorption grating to electromagnetically induced phase grating in a closed-loop atomic system, Appl. Opt. 54(36), 10613 (2015)
CrossRef ADS Google scholar
[31]
T. Naseri and R. Moradi, Realization of electromagnetically induced phase grating and Kerr nonlinearity in a graphene ensemble under Raman excitation, Superlattices Microstruct. 101, 592 (2017)
CrossRef ADS Google scholar
[32]
S. Wang, J. Yuan, L. Wang, L. Xiao, and S. Jia, Investigation on the monochromatic two-photon transition spectroscopy of rubidium by using intensity modulation method, J. Phys. Soc. Jpn. 87(8), 084301 (2018)
CrossRef ADS Google scholar
[33]
Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, Observation of electromagnetically induced Talbot effect in an atomic system, Phys. Rev. A 97(1), 013603 (2018)
CrossRef ADS Google scholar
[34]
J. Yuan, C. Wu, Y. Li, L. Wang, Y. Zhang, L. Xiao, and S. Jia, Integer and fractional electromagnetically induced Talbot effects in a ladder-type coherent atomic system, Opt. Express 27(1), 92 (2019)
CrossRef ADS Google scholar
[35]
Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, Observation of parity-time symmetry in optically induced atomic lattices, Phys. Rev. Lett. 117(12), 123601 (2016)
CrossRef ADS Google scholar
[36]
Z. Zhang, D. Ma, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, Non-Hermitian optics in atomic systems, J. Phys. At. Mol. Opt. Phys. 51(7), 072001 (2018)
CrossRef ADS Google scholar
[37]
Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, Four-wave mixing dipole soliton in laser-induced atomic gratings, Phys. Rev. Lett. 106(9), 093904 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2409 KB)

Accesses

Citations

Detail

Sections
Recommended

/