Controllable electromagnetically induced grating in a cascade-type atomic system

Jin-Peng Yuan , Chao-Hua Wu , Yi-Hong Li , Li-Rong Wang , Yun Zhang , Lian-Tuan Xiao , Suo-Tang Jia

Front. Phys. ›› 2019, Vol. 14 ›› Issue (5) : 52603

PDF (2409KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (5) : 52603 DOI: 10.1007/s11467-019-0924-1
RESEARCH ARTICLE

Controllable electromagnetically induced grating in a cascade-type atomic system

Author information +
History +
PDF (2409KB)

Abstract

A controllable electromagnetically induced grating (EIG) is experimentally realized in a coherent rubidium ensemble with 5S1/2–5P3/2–5D5/2 cascade configuration. In our work, a whole picture describing the relation between the first-order diffraction efficiency and the power of the coupling field is experimentally presented for the first time, which agrees well with the theoretical prediction. More important, by fine tuning the experimental parameters, the first-order diffraction efficiency of as high as 25% can be achieved and a clear three-order diffraction pattern is also observed. Such a controllable periodic structure can provide a powerful tool for studying the control of light dynamics, pave the way for realizing new optical device.

Keywords

coherent optical effects / diffraction gratings / multiphoton processes

Cite this article

Download citation ▾
Jin-Peng Yuan, Chao-Hua Wu, Yi-Hong Li, Li-Rong Wang, Yun Zhang, Lian-Tuan Xiao, Suo-Tang Jia. Controllable electromagnetically induced grating in a cascade-type atomic system. Front. Phys., 2019, 14(5): 52603 DOI:10.1007/s11467-019-0924-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. E. Harris, Electromagnetically induced transparency, Phys. Today 50(7), 36 (1997)

[2]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)

[3]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas, Nature 397(6720), 594 (1999)

[4]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid, Phys. Rev. Lett. 95(6), 063601 (2005)

[5]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, Long lifetime and highfidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy, Phys. Rev. Lett. 111(24), 240503 (2013)

[6]

Z. Wu, K. Chang, Y. Hu, Y. Zhang, Z. Jiang, and Y. Zhang, Modulation of four-wave mixing via photonic band gap, Front. Phys. 9(5), 665 (2014)

[7]

H. Ling, Y. Q. Li, and M. Xiao, Electromagnetically induced grating: Homogeneously broadened medium, Phys. Rev. A 57(2), 1338 (1998)

[8]

F. Bozorgzadeh, M. Sahrai, and H. Khoshsima, Controlling the electromagnetically induced grating via spontaneously generated coherence, Eur. Phys. J. D 70(9), 191 (2016)

[9]

A. W. Brown and M. Xiao, All-optical switching and routing based on an electromagnetically induced absorption grating, Opt. Lett. 30(7), 699 (2005)

[10]

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Nonlinear optics with stationary pulses of light, Phys. Rev. Lett. 94(6), 063902 (2005)

[11]

D. Moretti, D. Felinto, J. W. R. Tabosa, and A. Lezama, Dynamics of a stored Zeeman coherence grating in an external magnetic field, J. Phys. At. Mol. Opt. Phys. 43(11), 115502 (2010)

[12]

L. E. de Araujo, Electromagnetically induced phase grating, Opt. Lett. 35(7), 977 (2010)

[13]

M. Gao, Z. Wang, Z. Ullah, H. Chen, D. Zhang, Y. Zhang, and Y. Zhang, Modulated photonic band gaps generated by high-order wave mixing, J. Opt. Soc. Am. B 32(1), 179 (2015)

[14]

J. Tabosa, A. Lezama, and G. Cardoso, Transient Bragg diffraction by a transferred population grating: application for cold atoms velocimetry, Opt. Commun. 165(1–3), 59 (1999)

[15]

P. W. Zhai, X. M. Su, and J. Y. Gao, Optical bistability in electromagnetically induced grating, Phys. Lett. A 289(1–2), 27 (2001)

[16]

L. Zhao, W. Duan, and S. F. Yelin, All-optical beam control with high speed using image-induced blazed gratings in coherent media, Phys. Rev. A 82(1), 013809 (2010)

[17]

J. Wen, Y. Zhai, S. Du, and M. Xiao, Engineering biphoton wave packets with an electromagnetically induced grating, Phys. Rev. A 82(4), 043814 (2010)

[18]

M. Mitsunaga and N. Imoto, Observation of an electromagnetically induced grating in cold sodium atoms, Phys. Rev. A 59(6), 4773 (1999)

[19]

J. Sheng, J. Wang, M. A. Miri, D. N. Christodoulides, and M. Xiao, Observation of discrete diffraction patterns in an optically induced lattice, Opt. Express 23(15), 19777 (2015)

[20]

J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, Experimental study of discrete diffraction behavior in a coherent atomic system, Laser Phys. Lett. 14(12), 125206 (2017)

[21]

B. K. Dutta and P. K. Mahapatra, Electromagnetically induced grating in a three-level X-type system driven by a strong standing wave pump and weak probe fields, J. Phys. At. Mol. Opt. Phys. 39(5), 1145 (2006)

[22]

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence, Phys. Rev. A 83(3), 033824 (2011)

[23]

F. Zhou, Y. Qi, H. Sun, D. Chen, J. Yang, Y. Niu, and S. Gong, Electromagnetically induced grating in asymmetric quantum wells via Fano interference, Opt. Express 21(10), 12249 (2013)

[24]

Z. H. Xiao, L. Zheng, and H. Lin, Photoinduced diffraction grating in hybrid artificial molecule, Opt. Express 20(2), 1219 (2012)

[25]

S. Kuang, C. Jin, and C. Li, Gain-phase grating based on spatial modulation of active Raman gain in cold atoms, Phys. Rev. A 84(3), 033831 (2011)

[26]

L. Wang, F. Zhou, P. Hu, Y. Niu, and S. Gong, Twodimensional electromagnetically induced cross-grating in a four-level tripod-type atomic system, J. Phys. At. Mol. Opt. Phys. 47(22), 225501 (2014)

[27]

A. Vafafard and M. Sahrai, Electromagnetically induced grating based on Zeeman coherence oscillations in cases beyond the multi-photon resonance condition, J. Opt. Soc. Am. B 35(9), 2118 (2018)

[28]

T. Naseri and R. Sadighi-Bonabi, Electromagnetically induced phase grating via population trapping condition in a microwave-driven four-level atomic system, J. Opt. Soc. Am. B 31(11), 2879 (2014)

[29]

T. Naseri and R. Sadighi-Bonabi, Efficient electromagetically induced phase grating via quantum interference in a four-level n-type atomic system, J. Opt. Soc. Am. B 31(10), 2430 (2014)

[30]

A. Vafafard and M. Mahmoudi, Switching from electromagnetically induced absorption grating to electromagnetically induced phase grating in a closed-loop atomic system, Appl. Opt. 54(36), 10613 (2015)

[31]

T. Naseri and R. Moradi, Realization of electromagnetically induced phase grating and Kerr nonlinearity in a graphene ensemble under Raman excitation, Superlattices Microstruct. 101, 592 (2017)

[32]

S. Wang, J. Yuan, L. Wang, L. Xiao, and S. Jia, Investigation on the monochromatic two-photon transition spectroscopy of rubidium by using intensity modulation method, J. Phys. Soc. Jpn. 87(8), 084301 (2018)

[33]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, Observation of electromagnetically induced Talbot effect in an atomic system, Phys. Rev. A 97(1), 013603 (2018)

[34]

J. Yuan, C. Wu, Y. Li, L. Wang, Y. Zhang, L. Xiao, and S. Jia, Integer and fractional electromagnetically induced Talbot effects in a ladder-type coherent atomic system, Opt. Express 27(1), 92 (2019)

[35]

Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, Observation of parity-time symmetry in optically induced atomic lattices, Phys. Rev. Lett. 117(12), 123601 (2016)

[36]

Z. Zhang, D. Ma, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, Non-Hermitian optics in atomic systems, J. Phys. At. Mol. Opt. Phys. 51(7), 072001 (2018)

[37]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, Four-wave mixing dipole soliton in laser-induced atomic gratings, Phys. Rev. Lett. 106(9), 093904 (2011)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2409KB)

1021

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/