The delay time of gravitational wave – gamma-ray burst associations

Bing Zhang

PDF(697 KB)
PDF(697 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (6) : 64402. DOI: 10.1007/s11467-019-0913-4
MINI-REVIEW
MINI-REVIEW

The delay time of gravitational wave – gamma-ray burst associations

Author information +
History +

Abstract

The first gravitational wave (GW) – gamma-ray burst (GRB) association, GW170817/GRB 170817A, had an offset in time, with the GRB trigger time delayed by ~1.7 s with respect to the merger time of the GW signal. We generally discuss the astrophysical origin of the delay time, Δt, of GW-GRB associations within the context of compact binary coalescence (CBC) – short GRB (sGRB) associations and GW burst – long GRB (lGRB) associations. In general, the delay time should include three terms, the time to launch a clean (relativistic) jet, Δtjet; the time for the jet to break out from the surrounding medium, Δtbo; and the time for the jet to reach the energy dissipation and GRB emission site, ΔtGRB. For CBC-sGRB associations, Δtjet and Δtbo are correlated, and the final delay can be from 10 ms to a few seconds. For GWB-lGRB associations, Δtjet and Δtbo are independent. The latter is at least ~10 s, so that Δt of these associations is at least this long. For certain jet launching mechanisms of lGRBs, Δt can be minutes or even hours long due to the extended engine waiting time to launch a jet. We discuss the cases of GW170817/GRB 170817A and GW150914/GW150914-GBM within this theoretical framework and suggest that the delay times of future GW/GRB associations will shed light into the jet launching mechanisms of GRBs.

Keywords

gravitational waves / gamma-ray bursts: general

Cite this article

Download citation ▾
Bing Zhang. The delay time of gravitational wave – gamma-ray burst associations. Front. Phys., 2019, 14(6): 64402 https://doi.org/10.1007/s11467-019-0913-4

References

[1]
B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, , GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119(16), 161101 (2017)
[2]
B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, , Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. 848(2), L13 (2017)
[3]
A. Goldstein, P. Veres, E. Burns, M. S. Briggs, R. Hamburg, , An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A, Astrophys. J. 848(2), L14 (2017)
CrossRef ADS Google scholar
[4]
B. B. Zhang, B. Zhang, H. Sun, W. H. Lei, H. Gao, Y. Li, L. Shao, Y. Zhao, Y. D. Hu, H. J. Lü, X. F. Wu, X. L. Fan, G. Wang, A. J. Castro-Tirado, S. Zhang, B. Y. Yu, Y. Y. Cao, and E. W. Liang, A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor, Nat. Commun. 9(1), 447 (2018)
CrossRef ADS Google scholar
[5]
V. Connaughton, E. Burns, A. Goldstein, L. Blackburn, M. S. Briggs, , Fermi GBM observations of LIGO gravitational-wave event GW150914, Astrophys. J. 826(1), L6 (2016)
[6]
V. Connaughton, E. Burns, A. Goldstein, L. Blackburn, M. S. Briggs, , On the interpretation of the Fermi-GBM transient observed in coincidence with LIGO gravitational-wave event GW150914, Astrophys. J. 853(1), L9 (2018)
CrossRef ADS Google scholar
[7]
J. Greiner, J. M. Burgess, V. Savchenko, and H. F. Yu, On the Fermi-GBM event 0.4 s after GW150914, Astrophys. J. 827(2), L38 (2016)
CrossRef ADS Google scholar
[8]
M. Shibata, K. Kyutoku, T. Yamamoto, and K. Taniguchi, Gravitational waves from black hole-neutron star binaries: Classification of waveforms, Phys. Rev. D 79(4), 044030 (2009)
CrossRef ADS Google scholar
[9]
S. Kobayashi and P. Mészáros, Gravitational radiation from gamma-ray burst progenitors, Astrophys. J. 589(2), 861 (2003)
CrossRef ADS Google scholar
[10]
J.-J. Wei, B.-B. Zhang, X.-F. Wu, H. Gao, P. Mészáros, B. Zhang, Z.-G. Dai, S.-N. Zhang, and Z.-H. Zhu, Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts, J. Cosmol. Astropart. Phys. 2017(11), 035 (2017)
CrossRef ADS Google scholar
[11]
I. M. Shoemaker and K. Murase, Constraints from the time lag between gravitational waves and gamma rays: Implications of GW170817 and GRB 170817A, Phys. Rev. D 97(8), 083013 (2018)
CrossRef ADS Google scholar
[12]
B. Zhang, The Physics of Gamma-Ray Bursts, Cambridge: Cambridge University Press, 2018
CrossRef ADS Google scholar
[13]
J. Granot, D. Guetta, and R. Gill, Lessons from the short GRB 170817A: The first gravitational-wave detection of a binary neutron star merger, Astrophys. J. 850(2), L24 (2017)
CrossRef ADS Google scholar
[14]
P. Veres, P. Mészáros, A. Goldstein, N. Fraija, V. Connaughton, E. Burns, R. D. Preece, R. Hamburg, C. A. Wilson-Hodge, M. S. Briggs, and D. Kocevski, Gammaray burst models in light of the GRB 170817A-GW170817 connection, arXiv: 1802.07328 (2018)
[15]
D. B. Lin, T. Liu, J. Lin, X. G. Wang, W. M. Gu, and E. W. Liang, First electromagnetic pulse associated with a gravitational-wave event: Profile, duration, and delay, Astrophys. J. 856(2), 90 (2018)
CrossRef ADS Google scholar
[16]
O. S. Salafia, G. Ghisellini, G. Ghirlanda, and M. Colpi, Interpreting GRB170817A as a giant flare from a jet-less double neutron star merger, Astron. Astrophys. 619, A18 (2018)
CrossRef ADS Google scholar
[17]
Y. Z. Qian and S. E. Woosley, Nucleosynthesis in neutrino-driven winds (I): The physical conditions, Astrophys. J. 471(1), 331 (1996)
CrossRef ADS Google scholar
[18]
W. H. Lei, B. Zhang, and E. W. Liang, Hyperaccreting black hole as gamma-ray burst central engine (I): Baryon loading in gamma-ray burst jets, Astrophys. J. 765(2), 125 (2013)
CrossRef ADS Google scholar
[19]
B. D. Metzger, D. Giannios, T. A. Thompson, N. Bucciantini, and E. Quataert, The protomagnetar model for gamma-ray bursts, Mon. Not. R. Astron. Soc. 413(3), 2031 (2011)
CrossRef ADS Google scholar
[20]
P. C. Duffell, E. Quataert, D. Kasen, and H. Klion, Jet dynamics in compact object mergers: GW170817 likely had a successful jet, Astrophys. J. 866(1), 3 (2018)
CrossRef ADS Google scholar
[21]
K. P. Mooley, A. T. Deller, O. Gottlieb, E. Nakar, G. Hallinan, S. Bourke, D. A. Frail, A. Horesh, A. Corsi, and K. Hotokezaka, Superluminal motion of a relativistic jet in the neutron-star merger GW170817, Nature 561(7723), 355 (2018)
CrossRef ADS Google scholar
[22]
G. Ghirlanda, O. S. Salafia, Z. Paragi, M. Giroletti, J. Yang, , Compact radio emission indicates a structured jet was produced by a binary neutron star merger, Science 363(6430), 968 (2019)
CrossRef ADS Google scholar
[23]
M. Shibata and K. Taniguchi, Merger of black hole and neutron star in general relativity: Tidal disruption, torus mass, and gravitational waves, Phys. Rev. D 77(8), 084015 (2008)
CrossRef ADS Google scholar
[24]
J. J. Geng, B. Zhang, A. Kölligan, R. Kuiper, and Y. F. Huang, Propagation of a short GRB jet in the ejecta: Jet launching delay time, jet structure, and GW170817/GRB 170817A, arXiv: 1904.02326 (2019)
[25]
K. Ioka and T. Nakamura, Can an off-axis gamma-ray burst jet in GW170817 explain all the electromagnetic counterparts? Prog. Theor. Exp. Phys. 2018(4), 043E02 (2018)
CrossRef ADS Google scholar
[26]
P. Mészáros and M. J. Rees, Steep slopes and preferred breaks in gamma-ray burst spectra: The role of photospheres and comptonization, Astrophys. J. 530(1), 292 (2000)
CrossRef ADS Google scholar
[27]
M. J. Rees and P. Mészáros, Dissipative photosphere models of gamma-ray bursts and X-ray flashes, Astrophys. J. 628(2), 847 (2005)
CrossRef ADS Google scholar
[28]
A. Pe’er and F. Ryde, A theory of multicolor blackbody emission from relativistically expanding plasmas, Astrophys. J. 732(1), 49 (2011)
CrossRef ADS Google scholar
[29]
M. J. Rees and P. Mészáros, Unsteady outflow models for cosmological gamma-ray bursts, Astrophys. J. 430, L93 (1994)
CrossRef ADS Google scholar
[30]
S. Kobayashi, T. Piran, and R. Sari, Can internal shocks produce the variability in gamma-ray bursts? Astrophys. J. 490(1), 92 (1997)
CrossRef ADS Google scholar
[31]
B. Zhang and H. Yan, The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts, Astrophys. J. 726(2), 90 (2011)
CrossRef ADS Google scholar
[32]
Z. L. Uhm and B. Zhang, Toward an understanding of GRB prompt emission mechanism (I): The origin of spectral lags, Astrophys. J. 825(2), 97 (2016)
CrossRef ADS Google scholar
[33]
F. Daigne and R. Mochkovitch, The expected thermal precursors of gamma-ray bursts in the internal shock model, Mon. Not. R. Astron. Soc. 336(4), 1271 (2002)
CrossRef ADS Google scholar
[34]
A. Pe’er, P. Mészáros, and M. J. Rees, The observable effects of a photospheric component on GRB and XRF prompt emission spectrum, Astrophys. J. 642(2), 995 (2006)
CrossRef ADS Google scholar
[35]
B. Zhang and A. Pe’er, Evidence of an initially magnetically dominated outflow in GRB 080916C, Astrophys. J. 700(2), L65 (2009)
CrossRef ADS Google scholar
[36]
H. Gao, B. B. Zhang, and B. Zhang, Stepwise filter correlation method and evidence of superposed variability components in gamma-ray burst prompt emission light curves, Astrophys. J. 748(2), 134 (2012)
CrossRef ADS Google scholar
[37]
B. J. Morsony, D. Lazzati, and M. C. Begelman, The origin and propagation of variability in the outflows of long-duration gamma-ray bursts, Astrophys. J. 723(1), 267 (2010)
CrossRef ADS Google scholar
[38]
W. Deng and B. Zhang, Low energy spectral index and ep evolution of quasi-thermal photosphere emission of gamma-ray bursts, Astrophys. J. 785(2), 112 (2014)
CrossRef ADS Google scholar
[39]
Ž. Bošnjak and F. Daigne, Spectral evolution in gammaray bursts: Predictions of the internal shock model and comparison to observations, Astron. Astrophys. 568, A45 (2014)
CrossRef ADS Google scholar
[40]
Z. L. Uhm, B. Zhang, and J. Racusin, Toward an understanding of GRB prompt emission mechanism (II): Patterns of peak energy evolution and their connection to spectral lags, Astrophys. J. 869(2), 100 (2018)
CrossRef ADS Google scholar
[41]
L. Baiotti and L. Rezzolla, Binary neutron star mergers: A review of Einstein’s richest laboratory, Rep. Prog. Phys. 80(9), 096901 (2017)
CrossRef ADS Google scholar
[42]
S. Rosswog, E. Ramirez-Ruiz, and M. B. Davies, Highresolution calculations of merging neutron stars (III): Gamma-ray bursts, Mon. Not. R. Astron. Soc. 345(4), 1077 (2003)
CrossRef ADS Google scholar
[43]
R. Ciolfi, W. Kastaun, J. Vijay Kalinani, and B. Giacomazzo, The first 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger, arXiv: 1904.10222 (2019)
[44]
Z. G. Dai, X. Y. Wang, X. F. Wu, and B. Zhang, Xray flares from postmerger millisecond pulsars, Science 311(5764), 1127 (2006)
CrossRef ADS Google scholar
[45]
W. H. Gao and Y. Z. Fan, Short-living supermassive magnetar model for the early X-ray flares following short GRBs, Chin. J. Astron. Astrophys. 6(5), 513 (2006)
CrossRef ADS Google scholar
[46]
B. D. Metzger, E. Quataert, and T. A. Thompson, Shortduration gamma-ray bursts with extended emission from protomagnetar spin-down, Mon. Not. R. Astron. Soc. 385(3), 1455 (2008)
CrossRef ADS Google scholar
[47]
A. Rowlinson, P. T. O’Brien, N. R. Tanvir, B. Zhang, P. A. Evans, N. Lyons, A. J. Levan, R. Willingale, K. L. Page, O. Onal, D. N. Burrows, A. P. Beardmore, T. N. Ukwatta, E. Berger, J. Hjorth, A. S. Fruchter, R. L. Tunnicliffe, D. B. Fox, and A. Cucchiara, The unusual X-ray emission of the short Swift GRB 090515: Evidence for the formation of a magnetar? Mon. Not. R. Astron. Soc. 409(2), 531 (2010)
CrossRef ADS Google scholar
[48]
A. Rowlinson, P. T. O’Brien, B. D. Metzger, N. R. Tanvir, and A. J. Levan, Signatures of magnetar central engines in short GRB light curves, Mon. Not. R. Astron. Soc. 430(2), 1061 (2013)
CrossRef ADS Google scholar
[49]
H. J. Lü, B. Zhang, W. H. Lei, Y. Li, and P. D. Lasky, The millisecond magnetar central engine in short GRBs, Astrophys. J. 805(2), 89 (2015)
CrossRef ADS Google scholar
[50]
B. Zhang, Early X-ray and optical afterglow of gravitational wave bursts from mergers of binary neutron stars, Astrophys. J. 763(1), L22 (2013)
CrossRef ADS Google scholar
[51]
H. Gao, B. Zhang, and H. J. Lü, Constraints on binary neutron star merger product from short GRB observations, Phys. Rev. D 93(4), 044065 (2016)
CrossRef ADS Google scholar
[52]
H. Sun, B. Zhang, and H. Gao, X-ray counterpart of gravitational waves due to binary neutron star mergers: Light curves, luminosity function, and event rate density, Astrophys. J. 835, 7 (2017)
CrossRef ADS Google scholar
[53]
Y. Q. Xue, X. C. Zheng, Y. Li, W. N. Brandt, B. Zhang, B. Luo, B. B. Zhang, F. E. Bauer, H. Sun, B. D. Lehmer, X. F. Wu, G. Yang, X. Kong, J. Y. Li, M. Y. Sun, J. X. Wang, and F. Vito, A magnetar-powered X-ray transient as the aftermath of a binary neutron-star merger, Nature 568(7751), 198 (2019)
CrossRef ADS Google scholar
[54]
B. Zhang and P. Mészáros, Gamma-ray burst afterglow with continuous energy injection: Signature of a highly magnetized millisecond pulsar, Astrophys. J. 552(1), L35 (2001)
CrossRef ADS Google scholar
[55]
D. Zhang and Z. G. Dai, Hyperaccreting disks around magnetars for gamma-ray bursts: Effects of strong magnetic fields, Astrophys. J. 718(2), 841 (2010)
CrossRef ADS Google scholar
[56]
C. D. Ott, The gravitational-wave signature of corecollapse supernovae, Class. Quantum Gravity 26(6), 063001 (2009)
CrossRef ADS Google scholar
[57]
V. V. Usov, Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts, Nature 357(6378), 472 (1992)
CrossRef ADS Google scholar
[58]
A. Corsi and P. Mészáros, Gamma-ray burst afterglow plateaus and gravitational waves: Multi-messenger signature of a millisecond magnetar? Astrophys. J. 702(2), 1171 (2009)
CrossRef ADS Google scholar
[59]
T. Liu, C. Y. Lin, C. Y. Song, and A. Li, Comparison of gravitational waves from central engines of gamma-ray bursts: Neutrino-dominated accretion flows, Blandford– Znajek mechanisms, and millisecond magnetars, Astrophys. J. 850(1), 30 (2017)
CrossRef ADS Google scholar
[60]
S. E. Woosley, Gamma-ray bursts from stellar mass accretion disks around black holes, Astrophys. J. 405, 273 (1993)
CrossRef ADS Google scholar
[61]
A. I. MacFadyen and S. E. Woosley, Collapsars: Gammaray bursts and explosions in “failed supernovae”, Astrophys. J. 524(1), 262 (1999)
CrossRef ADS Google scholar
[62]
A. I. MacFadyen, S. E. Woosley, and A. Heger, Supernovae, jets, and collapsars, Astrophys. J. 550(1), 410 (2001)
CrossRef ADS Google scholar
[63]
S. E. Woosley and J. S. Bloom, The supernova–gammaray burst connection, Arastronomy & Astrophysics 44(1), 507 (2006)
CrossRef ADS Google scholar
[64]
W. Kluźniak and M. Ruderman, The central engine of gamma-ray bursters, Astrophys. J. 505(2), L113 (1998)
CrossRef ADS Google scholar
[65]
Z. G. Dai and T. Lu, γ-ray bursts and afterglows from rotating strange stars and neutron stars, Phys. Rev. Lett. 81(20), 4301 (1998)
CrossRef ADS Google scholar
[66]
M. A. Ruderman, L. Tao, and W. Kluźniak, A central engine for cosmic gamma-ray burst sources, Astrophys. J. 542(1), 243 (2000)
CrossRef ADS Google scholar
[67]
V. V. Usov, On the nature of non-thermal radiation from cosmological-ray bursters, Mon. Not. R. Astron. Soc. 267(4), 1035 (1994)
CrossRef ADS Google scholar
[68]
M. M. Kasliwal, E. Nakar, L. P. Singer, D. L. Kaplan, D. O. Cook, , Illuminating gravitational waves: A concordant picture of photons from a neutron star merger, Science 358(6370), 1559 (2017)
[69]
K. P. Mooley, E. Nakar, K. Hotokezaka, G. Hallinan, A. Corsi, , A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817, Nature 554(7691), 207 (2018)
CrossRef ADS Google scholar
[70]
E. Nakar and T. Piran, Implications of the radio and X-ray emission that followed GW170817, Mon. Not. R. Astron. Soc. 478(1), 407 (2018)
CrossRef ADS Google scholar
[71]
O. Gottlieb, E. Nakar, and T. Piran, The cocoon emission – an electromagnetic counterpart to gravitational waves from neutron star mergers, Mon. Not. R. Astron. Soc. 473(1), 576 (2018)
CrossRef ADS Google scholar
[72]
O. Bromberg, A. Tchekhovskoy, O. Gottlieb, E. Nakar, and T. Piran, The γ-rays that accompanied GW170817 and the observational signature of a magnetic jet breaking out of NS merger ejecta, Mon. Not. R. Astron. Soc. 475(3), 2971 (2018)
CrossRef ADS Google scholar
[73]
B. Margalit and B. D. Metzger, Constraining the maximum mass of neutron stars from multi-messenger observations of GW170817, Astrophys. J. 850(2), L19 (2017)
CrossRef ADS Google scholar
[74]
R. Gill, A. Nathanail, and L. Rezzolla, When did the remnant of GW170817 collapse to a black hole? arXiv: 1901.04138 (2019)
CrossRef ADS Google scholar
[75]
M. Ruiz, S. L. Shapiro, and A. Tsokaros, GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass, Phys. Rev. D 97(2), 021501 (2018)
CrossRef ADS Google scholar
[76]
L. Rezzolla, E. R. Most, and L. R. Weih, Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars, Astrophys. J. 852(2), L25 (2018)
CrossRef ADS Google scholar
[77]
A. Loeb, electromagnetic counterparts to black hole mergers detected by LIGO, Astrophys. J. 819(2), L21 (2016)
CrossRef ADS Google scholar
[78]
S. E. Woosley, The progenitor of GW150914, Astrophys. J. 824(1), L10 (2016)
CrossRef ADS Google scholar
[79]
L. Dai, J. C. McKinney, and M. C. Miller, Energetic constraints on electromagnetic signals from double black hole mergers, Mon. Not. R. Astron. Soc. 470(1), L92 (2017)
CrossRef ADS Google scholar
[80]
D. D’Orazio and A. Loeb, Single progenitor model for GW150914 and GW170104, Phys. Rev. D 97(8), 083008 (2018)
CrossRef ADS Google scholar
[81]
A. Janiuk, M. Bejger, S. Charzyński, and P. Sukova, On the possible gamma-ray burst–gravitational wave association in GW150914,New Astron. 51, 7 (2017)
CrossRef ADS Google scholar
[82]
R. Perna, D. Lazzati, and B. Giacomazzo, Short gammaray bursts from the merger of two black holes, Astrophys. J. 821(1), L18 (2016)
CrossRef ADS Google scholar
[83]
S. S. Kimura, S. Z. Takahashi, and K. Toma, Evolution of an accretion disc in binary black hole systems, Mon. Not. R. Astron. Soc. 465(4), 4406 (2017)
CrossRef ADS Google scholar
[84]
B. Zhang, Mergers of charged black holes: Gravitationalwave events, short gamma-ray bursts, and fast radio bursts, Astrophys. J. 827(2), L31 (2016)
CrossRef ADS Google scholar
[85]
B. Zhang, Charged compact binary coalescence signal and electromagnetic counterpart of plunging black hole– neutron star mergers, Astrophys. J. 873(2), L9 (2019)
CrossRef ADS Google scholar
[86]
Z. G. Dai, Inspiral of a spinning black hole–magnetized neutron star binary: Increasing charge and electromagnetic emission, Astrophys. J. 873(2), L13 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(697 KB)

Accesses

Citations

Detail

Sections
Recommended

/