Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows

Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Chuan-Dong Lin, Hui-Lin Lai, Zhi-Peng Liu

PDF(6362 KB)
PDF(6362 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 43602. DOI: 10.1007/s11467-019-0885-4
Research article

Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows

Author information +
History +

Abstract

We investigate the effects of viscosity and heat conduction on the onset and growth of Kelvin–Helmholtz instability (KHI) via an efficient discrete Boltzmann model. Technically, two effective approaches are presented to quantitatively analyze and understand the configurations and kinetic processes. One is to determine the thickness of mixing layers through tracking the distributions and evolutions of the thermodynamic nonequilibrium (TNE) measures; the other is to evaluate the growth rate of KHI from the slopes of morphological functionals. Physically, it is found that the time histories of width of mixing layer, TNE intensity, and boundary length show high correlation and attain their maxima simultaneously. The viscosity effects are twofold, stabilize the KHI, and enhance both the local and global TNE intensities. Contrary to the monotonically inhibiting effects of viscosity, the heat conduction effects firstly refrain then enhance the evolution afterwards. The physical reasons are analyzed and presented.

Keywords

Kelvin–Helmholtz instability / discrete Boltzmann method / thermodynamic nonequilibrium effect / morphological characterization

Cite this article

Download citation ▾
Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Chuan-Dong Lin, Hui-Lin Lai, Zhi-Peng Liu. Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows. Front. Phys., 2019, 14(4): 43602 https://doi.org/10.1007/s11467-019-0885-4

References

[1]
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press, London, 1961
[2]
W. D. Smyth and J. N. Moum, Anisotropy of turbulence in stably stratified mixing layers, Phys. Fluids 12, 1327 (2000)
CrossRef ADS Google scholar
[3]
Y. Matsumoto and M. Hoshino, Onset of turbulence induced by a Kelvin–Helmholtz vortex, Geophys. Res. Lett. 31, L02807 (2004)
CrossRef ADS Google scholar
[4]
O. Berné and Y. Matsumoto, The Kelvin–Helmholtz instability in orion: A source of turbulence and chemical mixing, Astrophys. J. Lett. 761, L4 (2012)
CrossRef ADS Google scholar
[5]
Z. Xia, Y. Shi, and Y. Zhao, Assessment of the shearimproved Smagorinsky model in laminar-turbulent transitional channel flow, J. Turbul. 16, 925 (2015)
CrossRef ADS Google scholar
[6]
Z. Xia, Y. Shi, and S. Chen, Direct numerical simulation of turbulent channel flow with spanwise rotation, J. Fluid Mech. 788, 42 (2016)
CrossRef ADS Google scholar
[7]
Z. Xia, Y. Shi, Q. Cai, M. Wan, and S. Chen, Multiple states in turbulent plane Couette flow with spanwise rotation, J. Fluid Mech. 837, 477 (2018)
CrossRef ADS Google scholar
[8]
R. P. Drake, High-Energy-Density Physics: Fundamentals, Inertial Fusion and Experimental Astrophysics, Springer, New York, 2006
CrossRef ADS Google scholar
[9]
M. T. Montgomery, V. A. Vladimirov, and P. V. Denissenko, An experimental study on hurricane mesovortices, J. Fluid Mech. 471, 1 (2002)
CrossRef ADS Google scholar
[10]
K. Wada and J. Koda, Instabilities of spiral shocks (I): Onset of wiggle instability and its mechanism, Mon. Not. R. Astron. Soc. 349, 270 (2004)
CrossRef ADS Google scholar
[11]
S. N. Borovikov and N. V. Pogorelov, Voyager 1 near the heliopause, Astrophys. J. Lett. 783, L16 (2014)
CrossRef ADS Google scholar
[12]
K. Avinash, G. P. Zank, B. Dasgupta, and S. Bhadoria, Instability of the heliopause driven by charge exchange interactions, Astrophys. J. Lett. 791, 102 (2014)
CrossRef ADS Google scholar
[13]
H. Hasegawa, M. Fujimoto, T. D. Phan, H. Rème, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. Tan-Dokoro, Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin–Helmholtz vortices, Nature 430, 755 (2004)
CrossRef ADS Google scholar
[14]
C. Foullon, E. Verwichte, V. M. Nakariakov, K. Nykyri, and C. J. Farrugia, Magnetic Kelvin–Helmholtz instability at the Sun, Astrophys. J. Lett. 729, L8 (2011)
CrossRef ADS Google scholar
[15]
X. T. He and W. Y. Zhang, Inertial fusion research in China, Eur. Phys. J. D 44, 227 (2007)
CrossRef ADS Google scholar
[16]
L. Wang, W. Ye, X. He, J. Wu, Z. Fan, C. Xue, H. Guo, W. Miao, Y. Yuan, J. Dong, G. Jia, J. Zhang, Y. Li, J. Liu, M. Wang, Y. Ding, and W. Zhang, Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions, Sci. China-Phys. Mech. Astron. 60, 055201 (2017)
CrossRef ADS Google scholar
[17]
M. Vandenboomgaerde, M. Bonnefille, and P. Gauthier, The Kelvin–Helmholtz instability in National Ignition Facility hohlraums as a source of gold-gas mixing, Phys. Plasmas 23, 052704 (2016)
CrossRef ADS Google scholar
[18]
M. Hishida, T. Fujiwara, and P. Wolanski, Fundamentals of rotating detonations, Shock Waves 19, 1 (2009)
CrossRef ADS Google scholar
[19]
V. Bychkov, D. Valiev, V. Akkerman, and C. K. Law, Gas compression moderates flame acceleration in deflagrationto-detonation transition, Combust. Sci. Technol. 184, 1066 (2012)
CrossRef ADS Google scholar
[20]
A. Petrarolo, M. Kobald, and S. Schlechtriem, Understanding Kelvin–Helmholtz instability in paraffin-based hybrid rocket fuels, Exp. Fluids 59, 62 (2018)
CrossRef ADS Google scholar
[21]
H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, and M. Tsubota, Quantum Kelvin–Helmholtz instability in phase-separated two-component Bose–Einstein condensates, Phys. Rev. B 81, 094517 (2010)
CrossRef ADS Google scholar
[22]
D. Kobyakov, A. Bezett, E. Lundh, M. Marklund, and V. Bychkov, Turbulence in binary Bose-Einstein condensates generated by highly nonlinear Rayleigh–Taylor and Kelvin–Helmholtz instabilities, Phys. Rev. A 89, 013631 (2014)
CrossRef ADS Google scholar
[23]
R. V. Coelho, M. Mendoza, M. M. Doria, and H. J. Herrmann, Kelvin–Helmholtz instability of the Dirac fluid of charge carriers on graphene, Phys. Rev. B 96, 184307 (2017)
CrossRef ADS Google scholar
[24]
M. Livio, Astrophysical jets: A phenomenological examination of acceleration and collimation, Phys. Rep. 311, 225 (1999)
CrossRef ADS Google scholar
[25]
L. F. Wang, W. H. Ye, and Y. J. Li, Combined effect of the density and velocity gradients in the combination of Kelvin–Helmholtz and Rayleigh–Taylor instabilities, Phys. Plasmas 17, 042103 (2010)
CrossRef ADS Google scholar
[26]
W. H. Ye, L. F. Wang, C. Xue, Z. F. Fan, and X. T. He, Competitions between Rayleigh–Taylor instability and Kelvin–Helmholtz instability with continuous density and velocity profiles, Phys. Plasmas 18, 022704 (2011)
CrossRef ADS Google scholar
[27]
A. P. Lobanov and J. A. Zensus, A cosmic double helix in the archetypical quasar 3C273, Science 294, 128 (2001)
CrossRef ADS Google scholar
[28]
B. A. Remington, R. P. Drake, and D. D. Ryutov, Experimental astrophysics with high power lasers and Z pinches, Rev. Mod. Phys. 78, 775 (2006)
CrossRef ADS Google scholar
[29]
X. Luo, F. Zhang, J. Ding, T. Si, J. Yang, Z. Zhai, and C. Wen, Long-term effect of Rayleigh–Taylor stabilization on converging Richtmyer–Meshkov instability, J. Fluid Mech. 849, 231 (2018)
CrossRef ADS Google scholar
[30]
J. J. Tao, X. T. He, and W. H. Ye, and F. H. Busse, Nonlinear Rayleigh–Taylor instability of rotating inviscid fluids, Phys. Rev. E 87, 013001 (2013)
CrossRef ADS Google scholar
[31]
C. Y. Xie, J. J. Tao, and Z. L. Sun, and J. Li, Retarding viscous Rayleigh–Taylor mixing by an optimized additional mode, Phys. Rev. E 95, 023109 (2017)
CrossRef ADS Google scholar
[32]
W. Liu, C. Yu, H. Jiang, and X. Li, Bell-Plessett effect on harmonic evolution of spherical Rayleigh–Taylor instability in weakly nonlinear scheme for arbitrary Atwood numbers, Phys. Plasmas 24, 022102 (2017)
CrossRef ADS Google scholar
[33]
Y. Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (I), Phys. Rep. 720–722, 1 (2017)
[34]
Y. Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (II), Phys. Rep. 723–725, 1 (2017)
CrossRef ADS Google scholar
[35]
L. F. Wang, W. H. Ye, Z. F. Fan, Y. J. Li, X. T. He and M. Y. Yu, Weakly nonlinear analysis on the Kelvin–Helmholtz instability, EPL 86, 15002 (2009)
CrossRef ADS Google scholar
[36]
U. V. Amerstorfer, N. V. Erkaev, U. Taubenschuss, and H. K. Biernat, Influence of a density increase on the evolution of the Kelvin–Helmholtz instability and vortices, Phys. Plasmas 17, 072901 (2010)
CrossRef ADS Google scholar
[37]
M. Zellinger, U. V. Möstl, N. V. Erkaev, and H. K. Biernat, 2.5D magnetohydrodynamic simulation of the Kelvin–Helmholtz instability around Venus-Comparison of the influence of gravity and density increase, Phys. Plasmas 19, 022104 (2012)
CrossRef ADS Google scholar
[38]
H. G. Lee and J. Kim, Two-dimensional Kelvin–Helmholtz instabilities of multi-component fluids, Eur. J. Mech. B. Fluids 49, 77 (2015)
CrossRef ADS Google scholar
[39]
A. Fakhari and T. Lee, Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers, Phys. Rev. E 87, 023304 (2013)
CrossRef ADS Google scholar
[40]
T. A. Howson, I. De Moortel, and P. Antolin, The effects of resistivity and viscosity on the Kelvin–Helmholtz instability in oscillating coronal loops, Astron. Astrophys. 602, A74 (2017)
CrossRef ADS Google scholar
[41]
K. S. Kim and M. Kim, Simulation of the Kelvin–Helmholtz instability using a multi-liquid moving particle semi-implicit method, Ocean Eng. 130, 531 (2017)
CrossRef ADS Google scholar
[42]
R. Zhang, X. He, G. Doolen, and S. Chen, Surface tension effects on two-dimensional two-phase Kelvin–Helmholtz instabilities, Adv. Water Res. 24, 461 (2001)
CrossRef ADS Google scholar
[43]
N. D. Hamlin and W. I. Newman, Role of the Kelvin–Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows, Phys. Rev. E 87, 043101 (2013)
CrossRef ADS Google scholar
[44]
Y. Liu, Z. H. Chen, H. H. Zhang, and Z. Y. Lin, Physical effects of magnetic fields on the Kelvin–Helmholtz instability in a free shear layer, Phys. Fluids 30, 044102 (2018)
CrossRef ADS Google scholar
[45]
W. C. Wan, G. Malamud, A. Shimony, C. A. Di Stefano, M. R. Trantham, S. R. Klein, D. Shvarts, C. C. Kuranz, and R. P. Drake, Observation of single-mode, Kelvin–Helmholtz instability in a supersonic flow, Phys. Rev. Lett. 115, 145001 (2015)
CrossRef ADS Google scholar
[46]
M. Karimi and S. S. Girimaji, Suppression mechanism of Kelvin–Helmholtz instability in compressible fluid flows, Phys. Rev. E 93, 041102(R) (2016)
[47]
Y. Gan, A. Xu, G. Zhang, and Y. Li, Lattice Boltzmann study on Kelvin–Helmholtz instability: Roles of velocity and density gradients, Phys. Rev. E 83, 056704 (2011)
CrossRef ADS Google scholar
[48]
L. F. Wang, C. Xue, W. H. Ye, and Y. J. Li, Destabilizing effect of density gradient on the Kelvin–Helmholtz instability, Phys. Plasmas 16, 112104 (2009)
CrossRef ADS Google scholar
[49]
L. F. Wang, W. H. Ye, and Y. J. Li, Numerical investigation on the ablative Kelvin–Helmholtz instability, EPL 87, 54005 (2009)
CrossRef ADS Google scholar
[50]
L. F. Wang, W. H. Ye, W. Don, Z. M. Sheng, Y. J. Li, and X. T. He, Formation of large-scale structures in ablative Kelvin–Helmholtz instability, Phys. Plasmas 17, 122308 (2010)
CrossRef ADS Google scholar
[51]
R. Asthana and G. S. Agrawal, Viscous potential flow analysis of electrohydrodynamic Kelvin–Helmholtz instability with heat and mass transfer, Int. J. Eng. Sci. 48, 1925 (2010)
CrossRef ADS Google scholar
[52]
M. K. Awasthi, R. Asthana, and G. S. Agrawal, Viscous corrections for the viscous potential flow analysis of magnetohydrodynamic Kelvin–Helmholtz instability with heat and mass transfer, Eur. Phys. J. A 48, 174 (2012)
CrossRef ADS Google scholar
[53]
M. K. Awasthi, R. Asthana, and G. S. Agrawal, Viscous correction for the viscous potential flow analysis of Kelvin–Helmholtz instability of cylindrical flow with heat and mass transfe, Int. J. Heat Mass Transfer 78, 251 (2014)
CrossRef ADS Google scholar
[54]
G. Liu, Y. Wang, G. Zang, and H. Zhao, Viscous Kelvin–Helmholtz instability analysis of liquid-vapor two-phase stratified flow for condensation in horizontal tubes, Int. J. Heat Mass Transfer 84, 592 (2015)
CrossRef ADS Google scholar
[55]
Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11, 5336 (2015)
CrossRef ADS Google scholar
[56]
Y. Gan, A. Xu, G. Zhang, Y. Zhang, and S. Succi, Discrete Boltzmann trans-scale modeling of high-speed compressible flows, Phys. Rev. E 97, 053312 (2018)
CrossRef ADS Google scholar
[57]
S. Li and Q. Li, Thermal non-equilibrium effect of smallscale structures in compressible turbulence, Mod. Phys. Lett. B 32, 1840013 (2018)
CrossRef ADS Google scholar
[58]
A. Xu, G. Zhang, Y. Gan, F. Chen and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7, 582 (2012)
CrossRef ADS Google scholar
[59]
A. Xu, G. Zhang, Y. Ying, and C. Wang, Complex fields in heterogeneous materials under shock: Modeling, simulation and analysis, Sci. China-Phys. Mech. Astron. 59, 650501 (2016)
CrossRef ADS Google scholar
[60]
Y. Gan, A. Xu, G. Zhang, and Y. Yang, Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, EPL 103, 24003 (2013)
CrossRef ADS Google scholar
[61]
B. Yan, A. Xu, G. Zhang, Y. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys. 8, 94 (2013)
CrossRef ADS Google scholar
[62]
C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice Boltzmann modeling of compressible flows, Phys. Rev. E 89, 013307 (2014)
CrossRef ADS Google scholar
[63]
A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxationtime lattice Boltzmann kinetic model for combustion, Phys. Rev. E 91, 043306 (2015)
CrossRef ADS Google scholar
[64]
F. Chen, A. Xu, and G. Zhang, Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor instability, Front. Phys. 11, 114703 (2016)
CrossRef ADS Google scholar
[65]
H. Lai, A. Xu, G. Zhang, Y. Gan, Y. Ying, and S. Succi, Nonequilibrium thermohydrodynamic effects on the Rayleigh–Taylor instability in compressible flows, Phys. Rev. E 94, 023106 (2016)
CrossRef ADS Google scholar
[66]
C. Lin, A. Xu, G. Zhang, and Y. Li, Double-distributionfunction discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)
CrossRef ADS Google scholar
[67]
Y. Zhang, A. Xu, G. Zhang, C. Zhu, and C. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame 173, 483 (2016)
CrossRef ADS Google scholar
[68]
C. Lin, A. Xu, G. Zhang, K. H. Luo, and Y. Li, Discrete Boltzmann modeling of Rayleigh–Taylor instability in two-component compressible flows, Phys. Rev. E 96, 053305 (2017)
CrossRef ADS Google scholar
[69]
C. Lin, K. H. Luo, L. Fei, and S. Succi, A multicomponent discrete Boltzmann model for nonequilibrium reactive flows, Sci. Rep. 7, 14580 (2017)
CrossRef ADS Google scholar
[70]
C. Lin and K. H. Luo, MRT discrete Boltzmann method for compressible exothermic reactive flows, Comput. Fluids 166, 176 (2018)
CrossRef ADS Google scholar
[71]
Y. Gan, A. Xu, G. Zhang, and H. Lai, Three-dimensional discrete Boltzmann models for compressible flows in and out of equilibrium, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 232, 477 (2018)
CrossRef ADS Google scholar
[72]
Y. Zhang, A. Xu, G. Zhang, Z. Chen, and P. Wang, Discrete ellipsoidal statistical BGK model and Burnett equations, Front. Phys. 13, 135101 (2018)
CrossRef ADS Google scholar
[73]
A. Xu, G. Zhang, Y. Zhang, P. Wang, and Y. Ying, Discrete Boltzmann model for implosion- and explosionrelated compressible flow with spherical symmetry, Front. Phys. 13, 135102 (2018)
CrossRef ADS Google scholar
[74]
C. Lin and K. H. Luo, Mesoscopic simulation of nonequilibrium detonation with discrete Boltzmann method, Combust. Flame 198, 356 (2018)
CrossRef ADS Google scholar
[75]
F. Chen, A. Xu and G. Zhang, Collaboration and competition between Richtmyer–Meshkov instability and Rayleigh–Taylor instability, Phys. Fluids 30, 102105 (2018)
CrossRef ADS Google scholar
[76]
P. Henri, S. S. Cerri, F. Califano, F. Pegoraro, C. Rossi, M. Faganello, O. Šebek, P. M. Tráavníček, P. Hellinger, J. T. Frederiksen, A. Nordlund, S. Markidis, R. Keppens, and G. Lapenta, Nonlinear evolution of the magnetized Kelvin–Helmholtz instability: From fluid to kinetic modeling, Phys. Plasmas 20, 102118 (2013)
CrossRef ADS Google scholar
[77]
T. Umeda, N. Yamauchi, Y. Wada, and S. Ueno, Evaluating gyro-viscosity in the Kelvin–Helmholtz instability by kinetic simulations, Phys. Plasmas 23, 054506 (2016)
CrossRef ADS Google scholar
[78]
A. Rosenfeld and A. C. Kak, Digital Picture Processing, Academic Press, New York, 1976
[79]
V. Sofonea and K. R. Mecke, Morphological characterization of spinodal decomposition kinetics, Eur. Phys. J. B 8, 99 (1999)
CrossRef ADS Google scholar
[80]
Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization, Phys. Rev. E 84, 046715 (2011)
CrossRef ADS Google scholar
[81]
Y. Gan, A. Xu, G. Zhang, P. Zhang and Y. Li, Lattice Boltzmann study of thermal phase separation: Effects of heat conduction, viscosity and Prandtl number, EPL 97, 44002 (2012)
CrossRef ADS Google scholar
[82]
A. Xu, G. Zhang, X. Pan, P. Zhang and J. Zhu, Morphological characterization of shocked porous material, J. Phys. D 42, 075409 (2009)
CrossRef ADS Google scholar
[83]
R. Machado, On the generalized Hermite-based lattice Boltzmann construction, lattice sets, weights, moments, distribution functions and high-order models, Front. Phys. 9, 490 (2014)
CrossRef ADS Google scholar
[84]
T. Kataoka and M. Tsutahara, Lattice Boltzmann model for the compressible Navier–Stokes equations with flexible specific-heat ratio, Phys. Rev. E 69, 035701(R) (2004)
[85]
Y. Zhang, R. Qin, and D. R. Emerson, Lattice Boltzmann simulation of rarefied gas flows in microchannels, Phys. Rev. E 71, 047702 (2005)
CrossRef ADS Google scholar
[86]
Y. H. Zhang, R. S. Qin, Y. H. Sun, R. W. Barber, and D. R. Emerson, Gas flow in microchannels — A lattice Boltzmann method approach, J. Stat. Phys. 121, 257 (2005)
CrossRef ADS Google scholar
[87]
B. I. Green and P. Vedula, A lattice based solution of the collisional Boltzmann equation with applications to microchannel flows, J. Stat. Mech: Theory Exp. P07016 (2013)
[88]
L. H. Holway, New statistical models for kinetic theory: Methods of construction, Phys. Fluids 9, 1658 (1966)
CrossRef ADS Google scholar
[89]
E. M. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid Dyn. 3, 95 (1968)
CrossRef ADS Google scholar
[90]
G. Liu, A method for constructing a model form for the Boltzmann equation, Phys. Fluids A 2, 277 (1990)
CrossRef ADS Google scholar
[91]
X. Shan, Simulation of Rayleigh–Bénard convection using a lattice Boltzmann method, Phys. Rev. E 55, 2770 (1997)
CrossRef ADS Google scholar
[92]
F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Multiplerelaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, EPL 90, 54003 (2010)
CrossRef ADS Google scholar
[93]
F. Chen, A. Xu, G. Zhang, and Y. Wang, Twodimensional MRT LB model for compressible and incompressible flows, Front. Phys. 9, 246 (2014)
CrossRef ADS Google scholar
[94]
R. Machado, On the moment system and a flexible Prandtl number, Mod. Phys. Lett. B 28, 1450048 (2014)
CrossRef ADS Google scholar
[95]
F. M. White, Viscous Fluid Flow, McGraw-Hill, New York, 1974
[96]
G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27, 1 (1978)
CrossRef ADS Google scholar
[97]
P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54, 115 (1984)
CrossRef ADS Google scholar
[98]
G. S. Jiang and C. W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126, 202 (1996)
CrossRef ADS Google scholar
[99]
H. X. Zhang, Non-oscillatory and non-free-parameter dissipation difference scheme, Acta Aerodyna. Sinica 6, 143 (1988)
[100]
U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicitexplicit Runge–Kutta methods for time-dependent partial differential equations, Appl. Numer. Math. 25, 151 (1997)
CrossRef ADS Google scholar
[101]
Q. Li, Y. L. He, Y. Wang, and W. Q. Tao, Coupled double-distribution-function lattice Boltzmann method for the compressible Navie–Stokes equations, Phys. Rev. E 76, 056705 (2007)
CrossRef ADS Google scholar
[102]
L. M. Yang, C. Shu, and Y. Wang, Development of a discrete gas-kinetic scheme for simulation of twodimensional viscous incompressible and compressible flows, Phys. Rev. E 93, 033311 (2016)
CrossRef ADS Google scholar
[103]
F. Gao, Y. Zhang, Z. He, and B. Tian, Formula for growth rate of mixing width applied to Richtmyer–Meshkov instability, Phys. Fluids 28, 114101 (2016)
CrossRef ADS Google scholar
[104]
Y. Zhang, Z. He, F. Gao, X. Li, and B. Tian, Evolution of mixing width induced by general Rayleigh–Taylor instability, Phys. Rev. E 93, 063102 (2016)
CrossRef ADS Google scholar
[105]
F. Gao, Y. Zhang, Z. He, L. Li, and B. Tian, Characteristics of turbulent mixing at late stage of the Richtmyer–Meshkov instability, AIP Adv. 7, 075020 (2017)
CrossRef ADS Google scholar
[106]
F. Lei, J. Ding, T. Si, Z. Zhai and X. Luo, Experimental study on a sinusoidal air/SF6 interface accelerated by a cylindrically converging shock, J. Fluid Mech. 826, 819 (2017)
CrossRef ADS Google scholar
[107]
J. Ding, T. Si, J. Yang, X. Lu, Z. Zhai, and X. Luo, Measurement of a Richtmyer–Meshkov instability at an air-SF6 interface in a semiannular shock tube, Phys. Rev. Lett. 119, 014501 (2017)
CrossRef ADS Google scholar
[108]
B. Guan, Z. Zhai, T. Si, X. Lu, and X. Luo, Manipulation of three-dimensional Richtmyer–Meshkov instability by initial interfacial principal curvatures, Phys. Fluids 29, 032106 (2017)
CrossRef ADS Google scholar
[109]
S. Huang, W. Wang, and X. Luo, Molecular-dynamics simulation of Richtmyer–Meshkov instability on a Li-H2 interface at extreme compressing conditions, Phys. Plasmas 25, 062705 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(6362 KB)

Accesses

Citations

Detail

Sections
Recommended

/