Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions
Ying-Yue Yang, Wen-Yang Sun, Wei-Nan Shi, Fei Ming, Dong Wang, Liu Ye
Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions
The dynamics of measurement’s uncertainty via entropy for a one-dimensional Heisenberg XY Z mode is examined in the presence of an inhomogeneous magnetic field and Dzyaloshinskii–Moriya (DM) interaction. It shows that the uncertainty of interest is intensively in connection with the filed’s temperature, the direction-oriented coupling strengths and the magnetic field. It turns out that the stronger coupling strengths and the smaller magnetic field would induce the smaller measurement’s uncertainty of interest within the current spin model. Interestingly, we reveal that the evolution of the uncertainty exhibits quite different dynamical behaviors in antiferromagnetic (Ji>0) and ferromagnetic (Ji<0) frames. Besides, an analytical solution related to the systematic entanglement (i.e., concurrence) is also derived in such a scenario. Furthermore, it is found that the DM-interaction is desirably working to diminish the magnitude of the measurement’s uncertainty in the region of high-temperature. Finally, we remarkably offer a resultful strategy to govern the entropy-based uncertainty through utilizing quantum weak measurements, being of fundamentally importance to quantum measurement estimation in the context of solid-state-based quantum information processing and computation.
measurement uncertainty / concurrence / Heisenberg XY Z chain / weak measurement / lower bound
[1] |
W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys. 43(3–4), 172 (1927)
CrossRef
ADS
Google scholar
|
[2] |
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
|
[3] |
I. Bialynicki-Birula, Rényi entropy and the uncertainty relations, AIP Conf. Proc. 889, 52 (2007)
CrossRef
ADS
Google scholar
|
[4] |
E. H. Kennard, Zur Quantenmechanik einfacher Bewegungstypen, Z. Phys. 44(4–5), 326 (1927)
CrossRef
ADS
Google scholar
|
[5] |
H. P. Robertson, The uncertainty principle, Phys. Rev. 34(1), 163 (1929)
CrossRef
ADS
Google scholar
|
[6] |
L. Maccone and A. K. Pati, Stronger Uncertainty Relations for All Incompatible Observables., Phys. Rev. Lett. 113(26), 260401 (2014)
CrossRef
ADS
Google scholar
|
[7] |
K. K. Wang, X. Zhan, Z. H. Bian, J. Li, Y. S. Zhang, and P. Xue, Experimental investigation of the stronger uncertainty relations for all incompatible observables, Phys. Rev. A 93(5), 052108 (2016)
CrossRef
ADS
Google scholar
|
[8] |
K. Kraus, Complementary observables and uncertainty relations, Phys. Rev. D 35(10), 3070 (1987)
CrossRef
ADS
Google scholar
|
[9] |
H. Maassen and J. B. M. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60(12), 1103 (1988)
CrossRef
ADS
Google scholar
|
[10] |
A. E. Rastegin, Entropic uncertainty relations for successive measurements of canonically conjugate observables, Ann. Phys. (Berlin) 528(11–12), 835 (2016)
CrossRef
ADS
Google scholar
|
[11] |
A. Ghasemi, M. R. Hooshmandasl, and M. K. Tavassoly, On the quantum information entropies and squeezing associated with the eigenstates of the isotonic oscillator, Phys. Scr. 84(3), 035007 (2011)
CrossRef
ADS
Google scholar
|
[12] |
D. Wang, A. J. Huang, R. D. Hoehn, F. Ming, W. Y. Sun, J. D. Shi, L. Ye, and S. Kais, Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir, Sci. Rep. 7(1), 1066 (2017)
CrossRef
ADS
Google scholar
|
[13] |
J. M. Renes and J. C. Boileau, Conjectured strong complementary information tradeoff, Phys. Rev. Lett. 103(2), 020402 (2009)
CrossRef
ADS
Google scholar
|
[14] |
M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, The uncertainty principle in the presence of quantum memory, Nat. Phys. 6(9), 659 (2010)
|
[15] |
R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement, Nat. Phys. 7(10), 757 (2011)
|
[16] |
C. F. Li, J. S. Xu, X. Y. Xu, K. Li, and G. C. Guo, Experimental investigation of the entanglement-assisted entropic uncertainty principle, Nat. Phys. 7(10), 752 (2011)
|
[17] |
Z. Jin, S. L. Su, A. D. Zhu, H. F. Wang, and S. Zhang, Engineering multipartite steady entanglement of distant atoms via dissipation, Front. Phys. 13(5), 134209 (2018)
CrossRef
ADS
Google scholar
|
[18] |
P. J. Coles, R. Colbeck, L. Yu, and M. Zwolak, Uncertainty Relations from Simple Entropic Properties, Phys. Rev. Lett. 108(21), 210405 (2012)
CrossRef
ADS
Google scholar
|
[19] |
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)
CrossRef
ADS
Google scholar
|
[20] |
M. J. W. Hall and H. M. Wiseman, Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information, New J. Phys. 14(3), 033040 (2012)
CrossRef
ADS
Google scholar
|
[21] |
C. S. Yu, Quantum coherence via skew information and its polygamy, Phys. Rev. A 95(4), 042337 (2017)
CrossRef
ADS
Google scholar
|
[22] |
P. J. Coles and M. Piani, Complementary sequential measurements generate entanglement, Phys. Rev. A 89(1), 010302 (2014)
CrossRef
ADS
Google scholar
|
[23] |
M. L. Hu and H. Fan, Upper bound and shareability of quantum discord based on entropic uncertainty relations, Phys. Rev. A 88(1), 014105 (2013)
CrossRef
ADS
Google scholar
|
[24] |
X. Y. Chen, L. Z. Jiang, and Z. A. Xu, Precise detection of multipartite entanglement in four-qubit Greenberger– Horne–Zeilinger diagonal states, Front. Phys. 13(5), 130317 (2018)
CrossRef
ADS
Google scholar
|
[25] |
X. M. Liu, W. W. Cheng, and J. M. Liu, Renormalization-group approach to quantum Fisher information in an XY model with staggered Dzyaloshinskii– Moriya interaction, Sci. Rep. 6, 19359 (2016)
CrossRef
ADS
Google scholar
|
[26] |
X. M. Liu, Z. Z. Du, and J. M. Liu, Quantum Fisher information for periodic and quasiperiodic anisotropic XY chains in a transverse field, Quantum Inform. Process. 15(4), 1793 (2016)
CrossRef
ADS
Google scholar
|
[27] |
N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security of quantum key distribution using d-level systems, Phys. Rev. Lett. 88(12), 127902 (2002)
CrossRef
ADS
Google scholar
|
[28] |
F. Grosshans and N. J. Cerf, Continuous-variable quantum cryptography is secure against non-Gaussian attacks, Phys. Rev. Lett. 92(4), 047905 (2004)
CrossRef
ADS
Google scholar
|
[29] |
F. Dupuis, O. Fawzi, and S. Wehner, Entanglement Sampling and Applications, IEEE Trans. Inf. Theory 61(2), 1093 (2015)
CrossRef
ADS
Google scholar
|
[30] |
R. Konig, S. Wehner, and J. Wullschleger, Unconditional security from noisy quantum storage, IEEE Trans. Inf. Theory 58(3), 1962 (2012)
CrossRef
ADS
Google scholar
|
[31] |
G. Vallone, D. G. Marangon, M. Tomasin, and P. Villoresi, Quantum randomness certified by the uncertainty principle, Phys. Rev. A 90(5), 052327 (2014)
CrossRef
ADS
Google scholar
|
[32] |
C. A. Miller and Y. Shi, Proceedings of ACM STOC, New York: ACM Press, 2014, pp 417–426
|
[33] |
D. Mondal, S. Bagchi, and A. K. Pati, Tighter uncertainty and reverse uncertainty relations, Phys. Rev. A 95(5), 052117 (2017)
CrossRef
ADS
Google scholar
|
[34] |
A. Riccardi, C. Macchiavello, and L. Maccone, Tight entropic uncertainty relations for systems with dimension three to five, Phys. Rev. A 95(3), 032109 (2017)
CrossRef
ADS
Google scholar
|
[35] |
Z. Y. Xu, W. L. Yang, and M. Feng, Quantum-memoryassisted entropic uncertainty relation under noise, Phys. Rev. A 86(1), 012113 (2012)
CrossRef
ADS
Google scholar
|
[36] |
Z. Y. Zhang, D. X. Wei, and J. M. Liu, Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence, Laser Phys. Lett. 15(6), 065207 (2018)
CrossRef
ADS
Google scholar
|
[37] |
M. Yu and M. F. Fang, Controlling the quantummemory- assisted entropic uncertainty relation by quantum-jump-based feedback control in dissipative environments, Quantum Inform. Process. 16(9), 213 (2017)
CrossRef
ADS
Google scholar
|
[38] |
Y. L. Zhang, M. F. Fang, G. D. Kang, and Q. P. Zhou, Reducing quantum-memory-assisted entropic uncertainty by weak measurement and weak measurement reversal, Int. J. Quant. Inf. 13(05), 1550037 (2015)
CrossRef
ADS
Google scholar
|
[39] |
H. M. Zou, M. F. Fang, B. Y. Yang, Y. N. Guo, W. He, and S. Y. Zhang, The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments, Phys. Scr. 89(11), 115101 (2014)
CrossRef
ADS
Google scholar
|
[40] |
L. J. Jia, Z. H. Tian, and J. L. Jing, Entropic uncertainty relation in de Sitter space, Ann. Phys. 353, 37 (2015)
CrossRef
ADS
Google scholar
|
[41] |
A. J. Huang, J. D. Shi, D. Wang, and L. Ye, Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations, Quantum Inform. Process. 16(2), 46 (2017)
CrossRef
ADS
Google scholar
|
[42] |
X. Zheng and G. F. Zhang, The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski-Moriya interaction, Quantum Inform. Process. 16(1), 1 (2017)
CrossRef
ADS
Google scholar
|
[43] |
D. Wang, F. Ming, A. J. Huang, W. Y. Sun, J. D. Shi, and L. Ye, Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame, Laser Phys. Lett. 14(5), 055205 (2017)
CrossRef
ADS
Google scholar
|
[44] |
D. Wang, W. N. Shi, R. D. Hoehn, F. Ming, W. Y. Sun, S. Kais, and L. Ye, Effects of Hawking radiation on the entropic uncertainty in a Schwarzschild space-time, Ann. Phys. (Berlin) 530(9), 1800080 (2018)
CrossRef
ADS
Google scholar
|
[45] |
Z. M. Huang, Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field, Quantum Inform. Process. 17(4), 73 (2018)
CrossRef
ADS
Google scholar
|
[46] |
Z. Y. Zhang, J. M. Liu, Z. F. Hu, and Y. Z. Wang, Entropic uncertainty relation for dirac particles in Garfinkle- Horowitz-Strominger dilation space-time, Ann. Phys. (Berlin) 530(11), 1800208 (2018)
CrossRef
ADS
Google scholar
|
[47] |
L. M. Yang, B. Chen, S. M. Fei, and Z. X. Wang, Dynamics of coherence-induced state ordering under Markovian channels, Front. Phys. 13(5), 130310 (2018)
CrossRef
ADS
Google scholar
|
[48] |
J. W. Zhou, P. F. Wang, F. Z. Shi, P. Huang, X. Kong, X. K. Xu, Q. Zhang, Z. X. Wang, X. Rong, and J. F. Du, Quantum information processing and metrology with color centers in diamonds, Front. Phys. 9(5), 587 (2014)
CrossRef
ADS
Google scholar
|
[49] |
P. F. Yu, J. G. Cai, J. M. Liu, and G. T. Shen, Teleportation via a two-qubit Heisenberg XYZmodel in the presence of phase decoherence, Physica A 387(18), 4723 (2008)
CrossRef
ADS
Google scholar
|
[50] |
R. Daneshmand and M. K. Tavassoly, The generation and properties of new classes of multipartite entangled coherent squeezed states in a conducting cavity, Ann. Phys. (Berlin) 529(5), 1600246 (2017)
CrossRef
ADS
Google scholar
|
[51] |
M. Qin, X. Wang, Y. B. Li, Z. Bai, and S. J. Lin, Effects of inhomogeneous magnetic fields and different Dzyaloshinskii–Moriya interaction on entanglement and teleportation in a two-qubit Heisenberg XYZ chain, Chin. Phys. C 37(11), 113102 (2013)
CrossRef
ADS
Google scholar
|
[52] |
G. Bowen and S. Bose, Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity, Phys. Rev. Lett. 87(26), 267901 (2001)
CrossRef
ADS
Google scholar
|
[53] |
W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)
CrossRef
ADS
Google scholar
|
[54] |
Y. Aharonov, D. Z. Albert, and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60(14), 1351 (1988)
CrossRef
ADS
Google scholar
|
[55] |
A. N. Korotkov, Continuous quantum measurement of a double dot, Phys. Rev. B 60(8), 5737 (1999)
CrossRef
ADS
Google scholar
|
[56] |
A. N. Korotkov and A. N. Jordan, Undoing a weak quantum measurement of a solid-state qubit, Phys. Rev. Lett. 97(16), 166805 (2006)
CrossRef
ADS
Google scholar
|
[57] |
X. P. Liao, M. S. Rong, and M. F. Fang, Protecting and enhancing spin squeezing from decoherence using weak measurements, Laser Phys. Lett. 14(6), 065201 (2017)
CrossRef
ADS
Google scholar
|
[58] |
R. Y. Yang and J. M. Liu, Enhancing the fidelity of remote state preparation by partial measurements, Quantum Inform. Process. 16(5), 125 (2017)
CrossRef
ADS
Google scholar
|
[59] |
A. N. Korotkov and K. Keane, Decoherence suppression by quantum measurement reversal, Phys. Rev. A 81(4), 040103 (2010)
CrossRef
ADS
Google scholar
|
[60] |
S. C. Wang, Z. W. Yu, W. J. Zou, and X. B. Wang, Protecting quantum states from decoherence of finite temperature using weak measurement, Phys. Rev. A 89(2), 022318 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |