Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions

Ying-Yue Yang, Wen-Yang Sun, Wei-Nan Shi, Fei Ming, Dong Wang, Liu Ye

PDF(2112 KB)
PDF(2112 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (3) : 31601. DOI: 10.1007/s11467-018-0880-1
RESEARCH ARTICLE

Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions

Author information +
History +

Abstract

The dynamics of measurement’s uncertainty via entropy for a one-dimensional Heisenberg XY Z mode is examined in the presence of an inhomogeneous magnetic field and Dzyaloshinskii–Moriya (DM) interaction. It shows that the uncertainty of interest is intensively in connection with the filed’s temperature, the direction-oriented coupling strengths and the magnetic field. It turns out that the stronger coupling strengths and the smaller magnetic field would induce the smaller measurement’s uncertainty of interest within the current spin model. Interestingly, we reveal that the evolution of the uncertainty exhibits quite different dynamical behaviors in antiferromagnetic (Ji>0) and ferromagnetic (Ji<0) frames. Besides, an analytical solution related to the systematic entanglement (i.e., concurrence) is also derived in such a scenario. Furthermore, it is found that the DM-interaction is desirably working to diminish the magnitude of the measurement’s uncertainty in the region of high-temperature. Finally, we remarkably offer a resultful strategy to govern the entropy-based uncertainty through utilizing quantum weak measurements, being of fundamentally importance to quantum measurement estimation in the context of solid-state-based quantum information processing and computation.

Keywords

measurement uncertainty / concurrence / Heisenberg XY Z chain / weak measurement / lower bound

Cite this article

Download citation ▾
Ying-Yue Yang, Wen-Yang Sun, Wei-Nan Shi, Fei Ming, Dong Wang, Liu Ye. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions. Front. Phys., 2019, 14(3): 31601 https://doi.org/10.1007/s11467-018-0880-1

References

[1]
W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys. 43(3–4), 172 (1927)
CrossRef ADS Google scholar
[2]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
[3]
I. Bialynicki-Birula, Rényi entropy and the uncertainty relations, AIP Conf. Proc. 889, 52 (2007)
CrossRef ADS Google scholar
[4]
E. H. Kennard, Zur Quantenmechanik einfacher Bewegungstypen, Z. Phys. 44(4–5), 326 (1927)
CrossRef ADS Google scholar
[5]
H. P. Robertson, The uncertainty principle, Phys. Rev. 34(1), 163 (1929)
CrossRef ADS Google scholar
[6]
L. Maccone and A. K. Pati, Stronger Uncertainty Relations for All Incompatible Observables., Phys. Rev. Lett. 113(26), 260401 (2014)
CrossRef ADS Google scholar
[7]
K. K. Wang, X. Zhan, Z. H. Bian, J. Li, Y. S. Zhang, and P. Xue, Experimental investigation of the stronger uncertainty relations for all incompatible observables, Phys. Rev. A 93(5), 052108 (2016)
CrossRef ADS Google scholar
[8]
K. Kraus, Complementary observables and uncertainty relations, Phys. Rev. D 35(10), 3070 (1987)
CrossRef ADS Google scholar
[9]
H. Maassen and J. B. M. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60(12), 1103 (1988)
CrossRef ADS Google scholar
[10]
A. E. Rastegin, Entropic uncertainty relations for successive measurements of canonically conjugate observables, Ann. Phys. (Berlin) 528(11–12), 835 (2016)
CrossRef ADS Google scholar
[11]
A. Ghasemi, M. R. Hooshmandasl, and M. K. Tavassoly, On the quantum information entropies and squeezing associated with the eigenstates of the isotonic oscillator, Phys. Scr. 84(3), 035007 (2011)
CrossRef ADS Google scholar
[12]
D. Wang, A. J. Huang, R. D. Hoehn, F. Ming, W. Y. Sun, J. D. Shi, L. Ye, and S. Kais, Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir, Sci. Rep. 7(1), 1066 (2017)
CrossRef ADS Google scholar
[13]
J. M. Renes and J. C. Boileau, Conjectured strong complementary information tradeoff, Phys. Rev. Lett. 103(2), 020402 (2009)
CrossRef ADS Google scholar
[14]
M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, The uncertainty principle in the presence of quantum memory, Nat. Phys. 6(9), 659 (2010)
[15]
R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement, Nat. Phys. 7(10), 757 (2011)
[16]
C. F. Li, J. S. Xu, X. Y. Xu, K. Li, and G. C. Guo, Experimental investigation of the entanglement-assisted entropic uncertainty principle, Nat. Phys. 7(10), 752 (2011)
[17]
Z. Jin, S. L. Su, A. D. Zhu, H. F. Wang, and S. Zhang, Engineering multipartite steady entanglement of distant atoms via dissipation, Front. Phys. 13(5), 134209 (2018)
CrossRef ADS Google scholar
[18]
P. J. Coles, R. Colbeck, L. Yu, and M. Zwolak, Uncertainty Relations from Simple Entropic Properties, Phys. Rev. Lett. 108(21), 210405 (2012)
CrossRef ADS Google scholar
[19]
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)
CrossRef ADS Google scholar
[20]
M. J. W. Hall and H. M. Wiseman, Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information, New J. Phys. 14(3), 033040 (2012)
CrossRef ADS Google scholar
[21]
C. S. Yu, Quantum coherence via skew information and its polygamy, Phys. Rev. A 95(4), 042337 (2017)
CrossRef ADS Google scholar
[22]
P. J. Coles and M. Piani, Complementary sequential measurements generate entanglement, Phys. Rev. A 89(1), 010302 (2014)
CrossRef ADS Google scholar
[23]
M. L. Hu and H. Fan, Upper bound and shareability of quantum discord based on entropic uncertainty relations, Phys. Rev. A 88(1), 014105 (2013)
CrossRef ADS Google scholar
[24]
X. Y. Chen, L. Z. Jiang, and Z. A. Xu, Precise detection of multipartite entanglement in four-qubit Greenberger– Horne–Zeilinger diagonal states, Front. Phys. 13(5), 130317 (2018)
CrossRef ADS Google scholar
[25]
X. M. Liu, W. W. Cheng, and J. M. Liu, Renormalization-group approach to quantum Fisher information in an XY model with staggered Dzyaloshinskii– Moriya interaction, Sci. Rep. 6, 19359 (2016)
CrossRef ADS Google scholar
[26]
X. M. Liu, Z. Z. Du, and J. M. Liu, Quantum Fisher information for periodic and quasiperiodic anisotropic XY chains in a transverse field, Quantum Inform. Process. 15(4), 1793 (2016)
CrossRef ADS Google scholar
[27]
N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security of quantum key distribution using d-level systems, Phys. Rev. Lett. 88(12), 127902 (2002)
CrossRef ADS Google scholar
[28]
F. Grosshans and N. J. Cerf, Continuous-variable quantum cryptography is secure against non-Gaussian attacks, Phys. Rev. Lett. 92(4), 047905 (2004)
CrossRef ADS Google scholar
[29]
F. Dupuis, O. Fawzi, and S. Wehner, Entanglement Sampling and Applications, IEEE Trans. Inf. Theory 61(2), 1093 (2015)
CrossRef ADS Google scholar
[30]
R. Konig, S. Wehner, and J. Wullschleger, Unconditional security from noisy quantum storage, IEEE Trans. Inf. Theory 58(3), 1962 (2012)
CrossRef ADS Google scholar
[31]
G. Vallone, D. G. Marangon, M. Tomasin, and P. Villoresi, Quantum randomness certified by the uncertainty principle, Phys. Rev. A 90(5), 052327 (2014)
CrossRef ADS Google scholar
[32]
C. A. Miller and Y. Shi, Proceedings of ACM STOC, New York: ACM Press, 2014, pp 417–426
[33]
D. Mondal, S. Bagchi, and A. K. Pati, Tighter uncertainty and reverse uncertainty relations, Phys. Rev. A 95(5), 052117 (2017)
CrossRef ADS Google scholar
[34]
A. Riccardi, C. Macchiavello, and L. Maccone, Tight entropic uncertainty relations for systems with dimension three to five, Phys. Rev. A 95(3), 032109 (2017)
CrossRef ADS Google scholar
[35]
Z. Y. Xu, W. L. Yang, and M. Feng, Quantum-memoryassisted entropic uncertainty relation under noise, Phys. Rev. A 86(1), 012113 (2012)
CrossRef ADS Google scholar
[36]
Z. Y. Zhang, D. X. Wei, and J. M. Liu, Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence, Laser Phys. Lett. 15(6), 065207 (2018)
CrossRef ADS Google scholar
[37]
M. Yu and M. F. Fang, Controlling the quantummemory- assisted entropic uncertainty relation by quantum-jump-based feedback control in dissipative environments, Quantum Inform. Process. 16(9), 213 (2017)
CrossRef ADS Google scholar
[38]
Y. L. Zhang, M. F. Fang, G. D. Kang, and Q. P. Zhou, Reducing quantum-memory-assisted entropic uncertainty by weak measurement and weak measurement reversal, Int. J. Quant. Inf. 13(05), 1550037 (2015)
CrossRef ADS Google scholar
[39]
H. M. Zou, M. F. Fang, B. Y. Yang, Y. N. Guo, W. He, and S. Y. Zhang, The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments, Phys. Scr. 89(11), 115101 (2014)
CrossRef ADS Google scholar
[40]
L. J. Jia, Z. H. Tian, and J. L. Jing, Entropic uncertainty relation in de Sitter space, Ann. Phys. 353, 37 (2015)
CrossRef ADS Google scholar
[41]
A. J. Huang, J. D. Shi, D. Wang, and L. Ye, Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations, Quantum Inform. Process. 16(2), 46 (2017)
CrossRef ADS Google scholar
[42]
X. Zheng and G. F. Zhang, The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski-Moriya interaction, Quantum Inform. Process. 16(1), 1 (2017)
CrossRef ADS Google scholar
[43]
D. Wang, F. Ming, A. J. Huang, W. Y. Sun, J. D. Shi, and L. Ye, Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame, Laser Phys. Lett. 14(5), 055205 (2017)
CrossRef ADS Google scholar
[44]
D. Wang, W. N. Shi, R. D. Hoehn, F. Ming, W. Y. Sun, S. Kais, and L. Ye, Effects of Hawking radiation on the entropic uncertainty in a Schwarzschild space-time, Ann. Phys. (Berlin) 530(9), 1800080 (2018)
CrossRef ADS Google scholar
[45]
Z. M. Huang, Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field, Quantum Inform. Process. 17(4), 73 (2018)
CrossRef ADS Google scholar
[46]
Z. Y. Zhang, J. M. Liu, Z. F. Hu, and Y. Z. Wang, Entropic uncertainty relation for dirac particles in Garfinkle- Horowitz-Strominger dilation space-time, Ann. Phys. (Berlin) 530(11), 1800208 (2018)
CrossRef ADS Google scholar
[47]
L. M. Yang, B. Chen, S. M. Fei, and Z. X. Wang, Dynamics of coherence-induced state ordering under Markovian channels, Front. Phys. 13(5), 130310 (2018)
CrossRef ADS Google scholar
[48]
J. W. Zhou, P. F. Wang, F. Z. Shi, P. Huang, X. Kong, X. K. Xu, Q. Zhang, Z. X. Wang, X. Rong, and J. F. Du, Quantum information processing and metrology with color centers in diamonds, Front. Phys. 9(5), 587 (2014)
CrossRef ADS Google scholar
[49]
P. F. Yu, J. G. Cai, J. M. Liu, and G. T. Shen, Teleportation via a two-qubit Heisenberg XYZmodel in the presence of phase decoherence, Physica A 387(18), 4723 (2008)
CrossRef ADS Google scholar
[50]
R. Daneshmand and M. K. Tavassoly, The generation and properties of new classes of multipartite entangled coherent squeezed states in a conducting cavity, Ann. Phys. (Berlin) 529(5), 1600246 (2017)
CrossRef ADS Google scholar
[51]
M. Qin, X. Wang, Y. B. Li, Z. Bai, and S. J. Lin, Effects of inhomogeneous magnetic fields and different Dzyaloshinskii–Moriya interaction on entanglement and teleportation in a two-qubit Heisenberg XYZ chain, Chin. Phys. C 37(11), 113102 (2013)
CrossRef ADS Google scholar
[52]
G. Bowen and S. Bose, Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity, Phys. Rev. Lett. 87(26), 267901 (2001)
CrossRef ADS Google scholar
[53]
W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)
CrossRef ADS Google scholar
[54]
Y. Aharonov, D. Z. Albert, and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60(14), 1351 (1988)
CrossRef ADS Google scholar
[55]
A. N. Korotkov, Continuous quantum measurement of a double dot, Phys. Rev. B 60(8), 5737 (1999)
CrossRef ADS Google scholar
[56]
A. N. Korotkov and A. N. Jordan, Undoing a weak quantum measurement of a solid-state qubit, Phys. Rev. Lett. 97(16), 166805 (2006)
CrossRef ADS Google scholar
[57]
X. P. Liao, M. S. Rong, and M. F. Fang, Protecting and enhancing spin squeezing from decoherence using weak measurements, Laser Phys. Lett. 14(6), 065201 (2017)
CrossRef ADS Google scholar
[58]
R. Y. Yang and J. M. Liu, Enhancing the fidelity of remote state preparation by partial measurements, Quantum Inform. Process. 16(5), 125 (2017)
CrossRef ADS Google scholar
[59]
A. N. Korotkov and K. Keane, Decoherence suppression by quantum measurement reversal, Phys. Rev. A 81(4), 040103 (2010)
CrossRef ADS Google scholar
[60]
S. C. Wang, Z. W. Yu, W. J. Zou, and X. B. Wang, Protecting quantum states from decoherence of finite temperature using weak measurement, Phys. Rev. A 89(2), 022318 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2112 KB)

Accesses

Citations

Detail

Sections
Recommended

/