Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility

Yu Guo, Nan Gao, Yizhen Bai, Jijun Zhao, Xiao Cheng Zeng

PDF(11667 KB)
PDF(11667 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 138117. DOI: 10.1007/s11467-018-0810-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility

Author information +
History +

Abstract

High carrier mobility and a direct semiconducting band gap are two key properties of materials for electronic device applications. Using first-principles calculations, we predict two types of two-dimensional semiconductors, ultrathin GeAsSe and SnSbTe nanosheets, with desirable electronic and optical properties. Both GeAsSe and SnSbTe sheets are energetically favorable, with formation energies of −0.19 and −0.09 eV/atom, respectively, and have excellent dynamical and thermal stability, as determined by phonon dispersion calculations and Born–Oppenheimer molecular dynamics simulations. The relatively weak interlayer binding energies suggest that these monolayer sheets can be easily exfoliated from the bulk crystals. Importantly, monolayer GeAsSe and SnSbTe possess direct band gaps (2.56 and 1.96 eV, respectively) and superior hole mobility (~20 000 cm2·V−1·s−1), and both exhibit notable absorption in the visible region. A comparison of the band edge positions with the redox potentials of water reveals that layered GeAsSe and SnSbTe are potential photocatalysts for water splitting. These exceptional properties make layered GeAsSe and SnSbTe promising candidates for use in future high-speed electronic and optoelectronic devices.

Keywords

2D GeAsSe and SnSbTe / carrier mobility / photocatalysts / DFT calculations

Cite this article

Download citation ▾
Yu Guo, Nan Gao, Yizhen Bai, Jijun Zhao, Xiao Cheng Zeng. Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility. Front. Phys., 2018, 13(4): 138117 https://doi.org/10.1007/s11467-018-0810-2

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef ADS Google scholar
[2]
J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)
CrossRef ADS Google scholar
[3]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef ADS Google scholar
[4]
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
CrossRef ADS Google scholar
[5]
Y. Pan, L. Zhang, L. Huang, L. Li, L. Meng, M. Gao, Q. Huan, X. Lin, Y. Wang, S. Du, H. J. Freund, and H. J. Gao, Construction of 2D atomic crystals on transition metal surfaces: Graphene, silicene, and hafnene, Small 10(11), 2215 (2014)
CrossRef ADS Google scholar
[6]
J. Lu, A. Carvalho, X. K. Chan, H. Liu, B. Liu, E. S. Tok, K. P. Loh, A. H. Castro Neto, and C. H. Sow, Atomic healing of defects in transition metal dichalcogenides, Nano Lett. 15(5), 3524 (2015)
CrossRef ADS Google scholar
[7]
M. S. Fuhrer, and J. Hone, Measurement of mobility in dual-gated MoS2 transistors, Nat. Nanotechnol. 8(3), 146 (2013)
CrossRef ADS Google scholar
[8]
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
CrossRef ADS Google scholar
[9]
J. O. Island, G. A. Steele, H. S. J. v. d. Zant, and A. Castellanos-Gomez, Environmental instability of fewlayer black phosphorus, 2D Mater. 2(1), 011002 (2015)
[10]
A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, and A. H. Castro Neto, Oxygen defects in phosphorene, Phys. Rev. Lett. 114(4), 046801 (2015)
CrossRef ADS Google scholar
[11]
D. J. Late, B. Liu, H. S. S. R. Matte, C. N. R. Rao, and V. P. Dravid, Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates, Adv. Funct. Mater. 22(9), 1894 (2012)
CrossRef ADS Google scholar
[12]
S. L. Li, K. Tsukagoshi, E. Orgiu, and P. Samorì, Charge transport and mobility engineering in twodimensional transition metal chalcogenide semiconductors, Chem. Soc. Rev. 45(1), 118 (2016)
CrossRef ADS Google scholar
[13]
R. Fei, W. Li, J. Li, and L. Yang, Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS, Appl. Phys. Lett. 107(17), 173104 (2015)
CrossRef ADS Google scholar
[14]
J. Zheng, H. Zhang, S. Dong, Y. Liu, C. Tai Nai, H. Suk Shin, H. Young Jeong, B. Liu, and K. Ping Loh, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide, Nat. Commun. 5(1), 2995 (2014)
CrossRef ADS Google scholar
[15]
Y. Guo, S. Zhou, Y. Bai, and J. Zhao, Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers, Appl. Phys. Lett. 110(16), 163102 (2017)
CrossRef ADS Google scholar
[16]
T. Gao, Q. Zhang, L. Li, X. Zhou, L. Li, H. Li, and T. Zhai, 2D ternary chalcogenides, Adv. Opt. Mater. 0(0), 1800058 (2018)
CrossRef ADS Google scholar
[17]
Y. Guo, S. Zhou, Y. Bai, and J. Zhao, Oxidation resistance of monolayer group-IV monochalcogenides, ACS Appl. Mater. Interfaces 9(13), 12013 (2017)
CrossRef ADS Google scholar
[18]
D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zólyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D. Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patanè, L. Eaves, I. V. Grigorieva, V. I. Fal’ko, A. K. Geim, and Y. Cao, High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe, Nat. Nanotechnol. 12(3), 223 (2017)
CrossRef ADS Google scholar
[19]
Y. Guo, S. Zhou, Y. Bai, and J. Zhao, Defects and oxidation of group-III monochalcogenide monolayers, J. Chem. Phys. 147(10), 104709 (2017)
CrossRef ADS Google scholar
[20]
L. C. Gomes, A. Carvalho, and A. H. Castro Neto, Vacancies and oxidation of two-dimensional group-IV monochalcogenides, Phys. Rev. B 94(5), 054103 (2016)
CrossRef ADS Google scholar
[21]
J. Wu, C. Tan, Z. Tan, Y. Liu, J. Yin, W. Dang, M. Wang, and H. Peng, Controlled synthesis of highmobility atomically thin bismuth oxyselenide crystals, Nano Lett. 17(5), 3021 (2017)
CrossRef ADS Google scholar
[22]
B. Wang, X. Niu, Y. Ouyang, Q. Zhou, and J. Wang, Ultrathin semiconducting Bi2Te2S and Bi2Te2Se with high electron mobilities, J. Phys. Chem. Lett. 9(3), 487 (2018)
CrossRef ADS Google scholar
[23]
J. Li, Z. Wang, Y. Wen, J. Chu, L. Yin, R. Cheng, L. Lei, P. He, C. Jiang, L. Feng, and J. He, Highperformance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets, Adv. Funct. Mater. 28(10), 1706437 (2018)
CrossRef ADS Google scholar
[24]
J. Wu, H. Yuan, M. Meng, C. Chen, Y. Sun, Z. Chen, W. Dang, C. Tan, Y. Liu, J. Yin, Y. Zhou, S. Huang, H. Q. Xu, Y. Cui, H. Y. Hwang, Z. Liu, Y. Chen, B. Yan, and H. Peng, High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se, Nat. Nanotechnol. 12(6), 530 (2017)
CrossRef ADS Google scholar
[25]
X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, MnPSe3 monolayer: A promising 2D visible-light photohydrolytic catalyst with high carrier mobility, Adv. Sci. 3(10), 1600062 (2016)
CrossRef ADS Google scholar
[26]
X. Li, X. Wu, and J. Yang, Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping,J. Am. Chem. Soc. 136(31), 11065 (2014)
CrossRef ADS Google scholar
[27]
C. Zha, R. Wang, A. Smith, A. Prasad, R. A. Jarvis, and B. Luther-Davies, Optical properties and structural correlations of GeAsSe chalcogenide glasses, J. Mater. Sci. Mater. Electron. 18(S1), 389 (2007)
CrossRef ADS Google scholar
[28]
D. T. Schaafsma, L. B. Shaw, B. Cole, J. S. Sanghera, and D. Aggarwal, Modeling of Dy3+-doped GeAsSe glass 1.3-m optical fiber amplifiers, IEEE Photonics Technol. Lett. 10(11), 1548 (1998)
CrossRef ADS Google scholar
[29]
A. Zakery, and M. Hatami, Nonlinear optical properties of pulsed-laser-deposited GeAsSe films and simulation of a nonlinear directional coupler switch, J. Opt. Soc. Am. B 22(3), 591 (2005)
CrossRef ADS Google scholar
[30]
N. Ashok, Y. L. Lee, and W. Shin, GeAsSe chalcogenide slot optical waveguide ring resonator for refractive index sensing, in: 2017 25th Optical Fiber Sensors Conference (OFS), 2017
[31]
F. Hulliger and T. Siegrist, The crystal structure of Ge-AsSe, Mater. Res. Bull. 16(10), 1245 (1981)
CrossRef ADS Google scholar
[32]
J. H. Yang, Y. Zhang, W. J. Yin, X. G. Gong, B. I. Yakobson, and S. H. Wei, Two-dimensional SiS layers with promising electronic and optoelectronic properties: Theoretical prediction, Nano Lett. 16(2), 1110 (2016)
CrossRef ADS Google scholar
[33]
E. Ziambaras, J. Kleis, E. Schröder, and P. Hyldgaard, Potassium intercalation in graphite: A van der Waals density-functional study, Phys. Rev. B 76(15), 155425 (2007)
CrossRef ADS Google scholar
[34]
R. Zacharia, H. Ulbricht, and T. Hertel, Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons, Phys. Rev. B 69(15), 155406 (2004)
CrossRef ADS Google scholar
[35]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[36]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[37]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[38]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[39]
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef ADS Google scholar
[40]
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
CrossRef ADS Google scholar
[41]
L. A. Burns, Á. V. Mayagoitia, B. G. Sumpter, and C. D. Sherrill, Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals, J. Chem. Phys. 134(8), 084107 (2011)
CrossRef ADS Google scholar
[42]
S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)
CrossRef ADS Google scholar
[43]
R. N. Barnett and U. Landman, Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2, Phys. Rev. B 48(4), 2081 (1993)
CrossRef ADS Google scholar
[44]
G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635 (1992)
CrossRef ADS Google scholar
[45]
M. D. Segall, R. Shah, C. J. Pickard, and M. C. Payne, Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B 54(23), 16317 (1996)
CrossRef ADS Google scholar
[46]
L. Zhou, Y. Guo, and J. Zhao, GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures, Physica E 95, 149 (2018)
CrossRef ADS Google scholar
[47]
V. Chakrapani, J. C. Angus, A. B. Anderson, S. D. Wolter, B. R. Stoner, and G. U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple, Science 318(5855), 1424 (2007)
CrossRef ADS Google scholar
[48]
H. L. Zhuang and R. G. Hennig, Single-layer group- III monochalcogenide photocatalysts for water splitting, Chem. Mater. 25(15), 3232 (2013)
CrossRef ADS Google scholar
[49]
Z. Ma, J. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)
CrossRef ADS Google scholar
[50]
X. Zhang, Z. Zhang, D. Wu, X. Zhang, X. Zhao, and Z. Zhou, Computational screening of 2D materials and rational design of heterojunctions for water splitting photocatalysts, Small Methods 2(5), 1700359 (2018)
CrossRef ADS Google scholar
[51]
A. R. Beal and H. P. Hughes, Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2, J. Phys. C Solid State Phys. 12(5), 881 (1979)
CrossRef ADS Google scholar
[52]
S. Takagi, A. Toriumi, M. Iwase, and H. Tango, On the universality of inversion layer mobility in Si MOSFET’s: Part I-effects of substrate impurity concentration, IEEE Trans. Electron Dev. 41(12), 2357 (1994)
CrossRef ADS Google scholar
[53]
S. Bruzzone and G. Fiori, Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride, Appl. Phys. Lett. 99(22), 222108 (2011)
CrossRef ADS Google scholar
[54]
G. Fiori and G. Iannaccone, Multiscale modeling for graphene-based nanoscale transistors, Proc. IEEE 101(7), 1653 (2013)
CrossRef ADS Google scholar
[55]
J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Highmobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5(1), 4475 (2014)
CrossRef ADS Google scholar
[56]
J. Dai and X. C. Zeng, Titanium trisulfide monolayer: Theoretical prediction of a new directg semiconductor with high and anisotropic carrier mobility, Angew. Chem. Int. Ed. 127(26), 7682 (2015)
CrossRef ADS Google scholar
[57]
Y. Guo, S. Zhou, J. Zhang, Y. Bai, and J. Zhao, Atomic structures and electronic properties of phosphorene grain boundaries, 2D Mater. 3(2), 025008 (2016)
[58]
W. Zhang, Y. G. Wang, Y. Ding, J. Yin, and P. Zhang, Two-dimensional GeAsSe with high and unidirectional conductivity, Nanoscale (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(11667 KB)

Accesses

Citations

Detail

Sections
Recommended

/