Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber

Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li

PDF(5478 KB)
PDF(5478 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 138113. DOI: 10.1007/s11467-018-0809-8
REVIEW ARTICLE
REVIEW ARTICLE

Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber

Author information +
History +

Abstract

Two-dimensional (2D) materials generally have unusual physical and chemical properties owing to the confined electro-strong interaction in a plane and can exhibit obvious anisotropy and a significant quantum-confinement effect, thus showing great promise in many fields. Some 2D materials, such as graphene and MXenes, have recently exhibited extraordinary electromagnetic-wave shielding and absorbing performance, which is attributed to their special electrical behavior, large specific surface area, and low mass density. Compared with traditional microwave attenuating materials, 2D materials have several obvious inherent advantages. First, similar to other nanomaterials, 2D materials have a very large specific surface area and can provide numerous interfaces for the enhanced interfacial polarization as well as the reflection and scattering of electromagnetic waves. Second, 2D materials have a particular 2D morphology with ultrasmall thickness, which is not only beneficial for the penetration and dissipation of electromagnetic waves through the 2D nanosheets, giving rise to multiple reflections and the dissipation of electromagnetic energy, but is also conducive to the design and fabrication of various well-defined structures, such as layer-by-layer assemblies, core–shell particles, and porous foam, for broadband attenuation of electromagnetic waves. Third, owing to their good processability, 2D materials can be integrated into various multifunctional composites for multimode attenuation of electromagnetic energy. In addition to behaving as microwave reflectors and absorbers, 2D materials can act as impedance regulators and provide structural support for good impedance matching and setup of the optimal structure. Numerous studies indicate that 2D materials are among the most promising microwave attenuation materials. In view of the rapid development and enormous advancement of 2D materials in shielding and absorbing electromagnetic wave, there is a strong need to summarize the recent research results in this field for presenting a comprehensive view and providing helpful suggestions for future development.

Keywords

electromagnetic interference shielding / microwave absorber / graphene / MXenes / polymer nanocomposites

Cite this article

Download citation ▾
Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber. Front. Phys., 2018, 13(4): 138113 https://doi.org/10.1007/s11467-018-0809-8

References

[1]
M. Ezawa, A topological insulator and helical zero mode in silicene under an inhomogeneous electric field, New J. Phys. 14(3), 033003 (2012)
CrossRef ADS Google scholar
[2]
Q. Liu, X. Zhang, L. B. Abdalla, A. Fazzio, and A. Zunger, Switching a normal insulator into a topological insulator via electric field with application to phosphorene, Nano Lett. 15(2), 1222 (2015)
CrossRef ADS Google scholar
[3]
F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)
CrossRef ADS Google scholar
[4]
C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X. L. Ma, H. M. Cheng, and W. Ren, Large-area highquality 2D ultrathin Mo2C superconducting crystals, Nat. Mater. 14(11), 1135 (2015)
CrossRef ADS Google scholar
[5]
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef ADS Google scholar
[6]
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef ADS Google scholar
[7]
N. Miao, B. Xu, N. C. Bristowe, J. Zhou, and Z. Sun, Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer,J. Am. Chem. Soc. 139(32), 11125 (2017)
CrossRef ADS Google scholar
[8]
N. Miao, B. Xu, L. Zhu, J. Zhou, and Z. Sun, Z. Sun, 2d intrinsic ferromagnets from van der Waals antiferromagnets, J. Am. Chem. Soc. 140(7), 2417 (2018)
CrossRef ADS Google scholar
[9]
G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. B. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. N. Xia, Y. L. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, Recent advances in two-dimensional materials beyond graphene, ACS Nano 9(12), 11509 (2015)
CrossRef ADS Google scholar
[10]
D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, and X. H. Bao, Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol. 11(3), 218 (2016)
CrossRef ADS Google scholar
[11]
C. L. Tan, X. H. Cao, X. J. Wu, Q. Y. He, J. Yang, X. Zhang, J. Z. Chen, W. Zhao, S. K. Han, G. H. Nam, M. Sindoro, and H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev. 117(9), 6225 (2017)
CrossRef ADS Google scholar
[12]
H. J. Yin and Z. Y. Tang, Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage, Chem. Soc. Rev. 45(18), 4873 (2016)
CrossRef ADS Google scholar
[13]
J. S. Li, H. Huang, Y. J. Zhou, C. Y. Zhang, and Z. T. Li, Research progress of graphene-based microwave absorbing materials in the last decade, J. Mater. Res. 32(07), 1213 (2017)
CrossRef ADS Google scholar
[14]
H. Lv, Y. Guo, Z. Yang, Y. Cheng, L. P. Wang, B. Zhang, Y. Zhao, Z. J. Xu, and G. Ji, A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials, J. Mater. Chem. C 5(3), 491 (2017)
CrossRef ADS Google scholar
[15]
S. A. Schelkunoff, Electromagnetic Waves, New York: Van Nostrand, 1943
[16]
F. Qin and C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J. Appl. Phys. 111(6), 061301 (2012)
CrossRef ADS Google scholar
[17]
Y. Naito and K. Suetake, Application of ferrite to electromagnetic wave absorber and its characteristics, IEEE T. Microw. Theory 19(1), 65 (1971)
CrossRef ADS Google scholar
[18]
M. Wu, Y. D. Zhang, S. Hui, T. D. Xiao, S. Ge, W. A. Hines, J. I. Budnick, and G. W. Taylor, Microwave magnetic properties of Co50/(SiO2)50 nanoparticles, Appl. Phys. Lett. 80(23), 4404 (2002)
CrossRef ADS Google scholar
[19]
O. Acher and S. Dubourg, Generalization of Snoek’s law to ferromagnetic films and composites, Phys. Rev. B 77(10), 104440 (2008)
CrossRef ADS Google scholar
[20]
J. M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, and C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials, Mater. Sci. Eng. Rep. 74(7), 211 (2013)
CrossRef ADS Google scholar
[21]
Y. I. Bhattacharjee, I. Arief, and S. Bose, Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives, J. Mater. Chem. C 5(30), 7390 (2017)
CrossRef ADS Google scholar
[22]
S. Geetha, K. K. Satheesh Kumar, C. R. K. Rao, M. Vijayan, and D. C. Trivedi, EMI shielding: Methods and materials-a review, J. Appl. Polym. Sci. 112(4), 2073 (2009)
CrossRef ADS Google scholar
[23]
D. Micheli, R. Pastore, C. Apollo, P. B. Morles, M. Marchetti, and G. Gradoni, in: Electromagnetic Characterization of Composite Materials and Microwave Absorbing Modeling, edited by B. Reddy, India: InTech, 2011, p. 359
[24]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[25]
S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Graphene-based composite materials, Nature 442(7100), 282 (2006)
CrossRef ADS Google scholar
[26]
S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, Electromagnetic interference shielding effectiveness of monolayer graphene, Nanotechnology 23(45), 455704 (2012)
CrossRef ADS Google scholar
[27]
B. Shen, W. Zhai, and W. Zheng, Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding, Adv. Funct. Mater. 24(28), 4542 (2014)
CrossRef ADS Google scholar
[28]
C. Wang, X. J. Han, P. Xu, X. L. Zhang, Y. C. Du, S. R. Hu, J. Y. Wang, and X. H. Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material, Appl. Phys. Lett. 98(7), 072906 (2011)
CrossRef ADS Google scholar
[29]
P. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y. H. Kim, and C. M. Koo, Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness, Carbon 94, 494 (2015)
CrossRef ADS Google scholar
[30]
Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance, Nanoscale 8(37), 16684 (2016)
CrossRef ADS Google scholar
[31]
X. Bai, Y. H. Zhai, and Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity, J. Phys. Chem. C 115(23), 11673 (2011)
CrossRef ADS Google scholar
[32]
Y. J. Chen, G. Xiao, T. S. Wang, Q. Y. Ouyang, L. H. Qi, Y. Ma, P. Gao, C. L. Zhu, M. S. Cao, and H. B. Jin, Porous Fe3O4/carbon core/shell nanorods: Synthesis and electromagnetic properties, J. Phys. Chem. C 115(28), 13603 (2011)
CrossRef ADS Google scholar
[33]
K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko, Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption, Sci. Rep. 4(1), 7191 (2015)
CrossRef ADS Google scholar
[34]
V. K. Singh, A. Shukla, M. K. Patra, L. Saini, R. K. Jani, S. R. Vadera, and N. Kumar, Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite, Carbon 50(6), 2202 (2012)
CrossRef ADS Google scholar
[35]
S. T. Hsiao, C. C. M. Ma, H. W. Tien, W. H. Liao, Y. S. Wang, S. M. Li, C. Y. Yang, S. C. Lin, and R. B. Yang, Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a waterborne polyurethane composite, ACS Appl. Mater. Interfaces 7(4), 2817 (2015)
CrossRef ADS Google scholar
[36]
B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu, J. Ma, Y. Zhang, D. Li, and G. Xu, Dielectric polarization in electromagnetic wave absorption: Review and perspective, J. Alloys Compd. 728, 1065 (2017)
CrossRef ADS Google scholar
[37]
X. J. Zhao, W. P. Liu, X. B. Jiang, K. Liu, G. R. Peng, and Z. J. Zhan, Exploring the relationship of dielectric relaxation behavior and discharge efficiency of P(VDFHFP)/PMMA blends by dielectric spectroscopy, Mater. Res. Express 3(7), 075304 (2016)
CrossRef ADS Google scholar
[38]
F. Wu, Y. L. Xia, Y. Wang, and M. Y. Wang, Two-step reduction of self-assembled three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO) nanocomposites for electromagnetic absorption,J. Mater. Chem. A 2(47), 20307 (2014)
CrossRef ADS Google scholar
[39]
P. B. Liu and Y. Huang, Synthesis of reduced graphene oxide-conducting polymers-Co3O4 composites and their excellent microwave absorption properties, RSC Advances 3(41), 19033 (2013)
CrossRef ADS Google scholar
[40]
J. N. Ma, W. Liu, B. Quan, X. H. Liang, and G. B. Ji, Incorporation of the polarization point on the graphene aerogel to achieve strong dielectric loss behavior, J. Colloid Interface Sci. 504, 479 (2017)
CrossRef ADS Google scholar
[41]
X. H. Liang, B. Quan, G. B. Ji, W. Liu, H. Q. Zhao, S. S. Dai, J. Lv, and Y. W. Du, Tunable dielectric performance derived from the metal–organic framework/ reduced graphene oxide hybrid with broadband absorption, ACS Sustain. Chem. & Eng. 5(11), 10570 (2017)
CrossRef ADS Google scholar
[42]
X. N. Chen, F. C. Meng, Z. W. Zhou, X. Tian, L. M. Shan, S. B. Zhu, X. L. Xu, M. Jiang, L. Wang, D. Hui, Y. Wang, J. Lu, and J. H. Gou, One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties, Nanoscale 6(14), 8140 (2014)
CrossRef ADS Google scholar
[43]
W. L. Song, J. Wang, L. Z. Fan, Y. Li, C. Y. Wang, and M. S. Cao, Interfacial engineering of carbon nanofibergraphene- carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks, ACS Appl. Mater. Interfaces 6(13), 10516 (2014)
CrossRef ADS Google scholar
[44]
T. K. Gupta, B. P. Singh, R. B. Mathur, and S. R. Dhakate, Multi-walled carbon nanotube-graphenepolyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness, Nanoscale 6(2), 842 (2014)
CrossRef ADS Google scholar
[45]
T. K. Gupta, B. P. Singh, V. N. Singh, S. Teotia, A. P. Singh, I. Elizabeth, S. R. Dhakate, S. K. Dhawan, and R. B. Mathur, MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties, J. Mater. Chem. A 2(12), 4256 (2014)
CrossRef ADS Google scholar
[46]
X. J. Zhang, G. S. Wang, Y. Z. Wei, L. Guo, and M. S. Cao, Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene- CuS nanocomposites and polyvinylidene fluoride, J. Mater. Chem. A 1(39), 12115 (2013)
CrossRef ADS Google scholar
[47]
X. J. Zhang, G. S. Wang, W. Q. Cao, Y. Z. Wei, M. S. Cao, and L. Guo, Fabrication of multi-functional PVDF/RGO composites via a simple thermal reduction process and their enhanced electromagnetic wave absorption and dielectric properties, RSC Advances 4(38), 19594 (2014)
CrossRef ADS Google scholar
[48]
M. K. Han, X. W. Yin, L. Kong, M. Li, W. Y. Duan, L. T. Zhang, and L. F. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties,J. Mater. Chem. A 2(39), 16403 (2014)
CrossRef ADS Google scholar
[49]
Y. L. Ren, H. Y. Wu, M. M. Lu, Y. J. Chen, C. L. Zhu, P. Gao, M. S. Cao, C. Y. Li, and Q. Y. Ouyang, Quaternary nanocomposites consisting of graphene, Fe3O4@Fe core@shell, and ZnO nanoparticles: Synthesis and excellent electromagnetic absorption properties, ACS Appl. Mater. Interfaces 4(12), 6436 (2012)
CrossRef ADS Google scholar
[50]
Y. Li and G. Li, Physics of Ferrites, Beijing: Science Press, 1978, p. 335
[51]
S. T. Zhang and W. Li, Condensed State Magnetic Physics, Beijing: Science Press, 2003, p. 393
[52]
X. J. Zhang, G. S. Wang, W. Q. Cao, Y. Z. Wei, J. F. Liang, L. Guo, and M. S. Cao, Enhanced microwave absorption property of reduced graphene oxide (RGO)- MnFe2O4 nanocomposites and polyvinylidene fluoride,ACS Appl. Mater. Interfaces 6(10), 7471 (2014)
CrossRef ADS Google scholar
[53]
Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. L. Fan, X. C. Pan, and J. P. He, Graphene-carbonyl iron crosslinked composites with excellent electromagnetic wave absorption properties, J. Mater. Chem. C 2(32), 6582 (2014)
CrossRef ADS Google scholar
[54]
Y. Qing, D. Min, Y. Zhou, F. Luo, and W. Zhou, Graphene nanosheet- and flake carbonyl iron particlefilled epoxy-silicone composites as thin-thickness and wide-bandwidth microwave absorber, Carbon 86, 98 (2015)
CrossRef ADS Google scholar
[55]
T. T. Chen, F. Deng, J. Zhu, C. F. Chen, G. B. Sun, S. L. Ma, and X. J. Yang, Hexagonal and cubic Ni nanocrystals grown on graphene: Phase-controlled synthesis, characterization and their enhanced microwave absorption properties, J. Mater. Chem. 22(30), 15190 (2012)
CrossRef ADS Google scholar
[56]
X. H. Li, J. Feng, Y. P. Du, J. T. Bai, H. M. Fan, H. L. Zhang, Y. Peng, and F. S. Li, One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber, J. Mater. Chem. A Mater. Energy Sustain. 3(10), 5535 (2015)
CrossRef ADS Google scholar
[57]
L. N. Wang, X. L. Jia, Y. F. Li, F. Yang, L. Q. Zhang, L. P. Liu, X. Ren, and H. T. Yang, Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles, J. Mater. Chem. A 2(36), 14940 (2014)
CrossRef ADS Google scholar
[58]
D. P. Sun, Q. Zou, Y. P. Wang, Y. J. Wang, W. Jiang, and F. S. Li, Controllable synthesis of porous Fe3O4@Zno sphere decorated graphene for extraordinary electromagnetic wave absorption, Nanoscale 6(12), 6557 (2014)
CrossRef ADS Google scholar
[59]
H. Lv, G. Ji, X. Liang, H. Zhang, and Y. Du, A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties, J. Mater. Chem. C 3(19), 5056 (2015)
CrossRef ADS Google scholar
[60]
L. Wang, Y. Huang, X. Sun, H. J. Huang, P. B. Liu, M. Zong, and Y. Wang, Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures, Nanoscale 6(6), 3157 (2014)
CrossRef ADS Google scholar
[61]
A. P. Singh, P. Garg, F. Alam, K. Singh, R. B. Mathur, R. P. Tandon, A. Chandra, and S. K. Dhawan, Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, gamma-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band, Carbon 50(10), 3868 (2012)
CrossRef ADS Google scholar
[62]
H. L. Xu, H. Bi, and R. B. Yang, Enhanced microwave absorption property of bowl-like Fe3O4 hollow spheres/reduced graphene oxide composites, J. Appl. Phys. 111, 07A522 (2012)
[63]
K. Singh, A. Ohlan, V. H. Pham, B. R, S. Varshney, J. Jang, S. H. Hur, W. M. Choi, M. Kumar, S. K. Dhawan, B.S. Kong, and J. S. Chung, Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution, Nanoscale 5(6), 2411 (2013)
CrossRef ADS Google scholar
[64]
Y. Chen, Y. Li, M. Yip, and N. Tai, Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles, Compos. Sci. Technol. 80, 80 (2013)
CrossRef ADS Google scholar
[65]
Y. J. Chen, Z. Y. Lei, H. Y. Wu, C. L. Zhu, P. Gao, Q. Y. Ouyang, L. H. Qi, and W. Qin, Electromagnetic absorption properties of graphene/Fe nanocomposites, Mater. Res. Bull. 48(9), 3362 (2013)
CrossRef ADS Google scholar
[66]
X. C. Zhao, Z. M. Zhang, L. Y. Wang, K. Xi, Q. Q. Cao, D. H. Wang, Y. Yang, and Y. W. Du, Excellent microwave absorption property of graphene-coated Fe nanocomposites, Sci. Rep. 3(1), 3421 (2013)
CrossRef ADS Google scholar
[67]
G. Z. Wang, Z. Gao, G. P. Wan, S. W. Lin, P. Yang, and Y. Qin, High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers, Nano Res. 7(5), 704 (2014)
CrossRef ADS Google scholar
[68]
J. Feng, F. Z. Pu, Z. X. Li, X. H. Li, X. Y. Hu, and J. T. Bai, Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber, Carbon 104, 214 (2016)
CrossRef ADS Google scholar
[69]
C. G. Hu, Z. Y. Mou, G. W. Lu, N. Chen, Z. L. Dong, M. J. Hu, and Qu, graphene-Fe3O4 nanocomposites with high-performance microwave absorption, Phys. Chem. Chem. Phys. 15(31), 13038 (2013)
CrossRef ADS Google scholar
[70]
X. H. Li, H. B. Yi, J. W. Zhang, J. Feng, F. S. Li, D. S. Xue, H. L. Zhang, Y. Peng, and N. J. Mellors, Fe3O4- graphene hybrids: Nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range,J. Nanopart. Res. 15(3), 1472 (2013)
CrossRef ADS Google scholar
[71]
X. L. Zheng, J. Feng, Y. Zong, H. Miao, X. Y. Hu, J. T. Bai, and X. H. Li, Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers, J. Mater. Chem. C 3(17), 4452 (2015)
CrossRef ADS Google scholar
[72]
T. S. Wang, Z. H. Liu, M. M. Lu, B. Wen, Q. Y. Ouyang, Y. J. Chen, C. L. Zhu, P. Gao, C. Y. Li, M. S. Cao, and L. H. Qi, Graphene-Fe3O4 nanohybrids: Synthesis and excellent electromagnetic absorption properties, J. Appl. Phys. 113(2), 024314 (2013)
CrossRef ADS Google scholar
[73]
D. Z. Chen, G. S. Wang, S. He, J. Liu, L. Guo, and M. S. Cao, Controllable fabrication of mono-dispersed RGOhematite nanocomposites and their enhanced wave absorption properties, J. Mater. Chem. A 1(19), 5996 (2013)
CrossRef ADS Google scholar
[74]
L. Kong, X. W. Yin, Y. J. Zhang, X. Y. Yuan, Q. Li, F. Ye, L. F. Cheng, and L. T. Zhang, Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters, J. Phys. Chem. C 117(38), 19701 (2013)
CrossRef ADS Google scholar
[75]
M. Fu, Q. Z. Jiao, Y. Zhao, and H. S. Li, Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials,J. Mater. Chem. A 2(3), 735 (2014)
CrossRef ADS Google scholar
[76]
M. Zong, Y. Huang, H. W. Wu, Y. Zhao, Q. F. Wang, and X. Sun, One-pot hydrothermal synthesis of rGO/CoFe2O4 composite and its excellent microwave absorption properties, Mater. Lett. 114, 52 (2014)
CrossRef ADS Google scholar
[77]
X. H. Li, J. Feng, H. Zhu, C. H. Qu, J. T. Bai, and X. L. Zheng, Sandwich-like graphene nanosheets decorated with superparamagnetic CoFe2O4 nanocrystals and their application as an enhanced electromagnetic wave absorber, RSC Advances 4(63), 33619 (2014)
CrossRef ADS Google scholar
[78]
M. Fu, Q. Z. Jiao, and Y. Zhao, Preparation of NiFe2O4 nanorod-graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties, J. Mater. Chem. A 1(18), 5577 (2013)
CrossRef ADS Google scholar
[79]
J. Z. He, X. X. Wang, Y. L. Zhang, and M. S. Cao, Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity, J. Mater. Chem. C 4(29), 7130 (2016)
CrossRef ADS Google scholar
[80]
H. L. Lv, Y. H. Guo, G. L. Wu, G. B. Ji, Y. Zhao, and Z. C. J. Xu, Interface polarization strategy to solve electromagnetic wave interference issue, ACS Appl. Mater. Interfaces 9(6), 5660 (2017)
CrossRef ADS Google scholar
[81]
X. B. Li, S. W. Yang, J. Sun, P. He, X. P. Pu, and G. Q. Ding, Enhanced electromagnetic wave absorption performances of Co3O4 nanocube/reduced graphene oxide composite, Synth. Met. 194, 52 (2014)
CrossRef ADS Google scholar
[82]
M. Verma, A. P. Singh, P. Sambyal, B. P. Singh, S. K. Dhawan, and V. Choudhary, Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding, Phys. Chem. Chem. Phys. 17(3), 1610 (2015)
CrossRef ADS Google scholar
[83]
B. Qu, C. L. Zhu, C. Y. Li, X. T. Zhang, and Y. J. Chen, Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material, ACS Appl. Mater. Interfaces 8(6), 3730 (2016)
CrossRef ADS Google scholar
[84]
A. P. Singh, M. Mishra, A. Chandra, and S. K. Dhawan, Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application, Nanotechnology 22(46), 465701 (2011)
CrossRef ADS Google scholar
[85]
W. L. Song, L. Z. Fan, M. S. Cao, M. M. Lu, C. Y. Wang, J. Wang, T. T. Chen, Y. Li, Z. L. Hou, J. Liu, and Y. P. Sun, Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding, J. Mater. Chem. C 2(25), 5057 (2014)
CrossRef ADS Google scholar
[86]
W. L. Song, M. S. Cao, M. M. Lu, J. Yang, H. F. Ju, Z. L. Hou, J. Liu, J. Yuan, and L. Z. Fan, Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement, Nanotechnology 24(11), 115708 (2013)
CrossRef ADS Google scholar
[87]
W. L. Song, M. S. Cao, M. M. Lu, S. Bi, C. Y. Wang, J. Liu, J. Yuan, and L. Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding, Carbon 66, 67 (2014)
CrossRef ADS Google scholar
[88]
N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, and J. K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding, Adv. Mater. 26(31), 5480 (2014)
CrossRef ADS Google scholar
[89]
A. P. Singh, M. Mishra, D. P. Hashim, T. N. Narayanan, M. G. Hahm, P. Kumar, J. Dwivedi, G. Kedawat, A. Gupta, B. P. Singh, A. Chandra, R. Vajtai, S. K. Dhawan, P. M. Ajayan, and B. K. Gupta, Probing the engineered sandwich network of vertically aligned carbon nanotube-reduced graphene oxide composites for high performance electromagnetic interference shielding applications, Carbon 85, 79 (2015)
CrossRef ADS Google scholar
[90]
H. L. Lv, Z. H. Yang, P. L. Wang, G. B. Ji, J. Z. Song, L. R. Zheng, H. B. Zeng, and Z. C. J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device, Adv. Mater. 30(15), 1706343 (2018)
CrossRef ADS Google scholar
[91]
J. Feng, Y. Hou, Y. Wang, and L. Li, Synthesis of hierarchical ZnFe2O4@SiO2@rGO core-shell microspheres for enhanced electromagnetic wave absorption, ACS Appl. Mater. Interfaces 9(16), 14103 (2017)
CrossRef ADS Google scholar
[92]
Y. F. Pan, G. S. Wang, and Y. H. Yue, Fabrication of Fe3O4@SiO2@rGO nanocomposites and their excellent absorption properties with low filler content, RSC Advances 5(88), 71718 (2015)
CrossRef ADS Google scholar
[93]
S. Li, Y. Huang, X. Ding, N. Zhang, M. Zong, M. Wang, and J. Liu, Synthesis of core-shell FeCo@SiO2 particles coated with the reduced graphene oxide as an efficient broadband electromagnetic wave absorber, J. Mater. Sci.: Mater. Electron. 28(21), 15782 (2017)
CrossRef ADS Google scholar
[94]
X. Liu, L. S. Wang, Y. Ma, Y. Qiu, Q. Xie, Y. Chen, and D. L. Peng, Facile synthesis and microwave absorption properties of yolk-shell ZnO-Ni-C/RGO composite materials, Chem. Eng. J. 333, 92 (2018)
CrossRef ADS Google scholar
[95]
D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding, Adv. Funct. Mater. 25(4), 559 (2015)
CrossRef ADS Google scholar
[96]
X. Jian, B. Wu, Y. Wei, S. X. Dou, X. Wang, W. He, and N. Mahmood, Facile synthesis of Fe3O4/GCS composites and their enhanced microwave absorption properties, ACS Appl. Mater. Interfaces 8(9), 6101 (2016)
CrossRef ADS Google scholar
[97]
Q. Song, F. Ye, X. Yin, W. Li, H. Li, Y. Liu, K. Li, K. Xie, X. Li, Q. Fu, L. Cheng, L. Zhang, and B. Wei, Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding, Adv. Mater. 29(31), 1701583 (2017)
CrossRef ADS Google scholar
[98]
L. Wang, Y. Huang, C. Li, J. J. Chen, and X. Sun, Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: Synthesis and microwave absorption performance, Phys. Chem. Chem. Phys. 17(8), 5878 (2015)
CrossRef ADS Google scholar
[99]
X. M. Bian, L. Liu, H. B. Li, C. Y. Wang, Q. Xie, Q. L. Zhao, S. Bi, and Z. L. Hou, Construction of threedimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: Flexible hierarchical magnetic textile composites for strong electromagnetic shielding, Nanotechnology 28(4), 045710 (2017)
CrossRef ADS Google scholar
[100]
Y. Wang, Y. Fu, X. Wu, W. Zhang, Q. Wang, and J. Li, Synthesis of hierarchical core-shell NiFe2O4@MnO2 composite microspheres decorated graphene nanosheet for enhanced microwave absorption performance, Ceram. Int. 43(14), 11367 (2017)
CrossRef ADS Google scholar
[101]
X. Zhang, Y. Huang, X. Chen, C. Li, and J. Chen, Hierarchical structures of graphene@CoFe2O4@SiO2@TiO2 nanosheets: Synthesis and excellent microwave absorption properties, Mater. Lett. 158, 380 (2015)
CrossRef ADS Google scholar
[102]
H. L. Yu, T. S. Wang, B. Wen, M. M. Lu, Z. Xu, C. L. Zhu, Y. J. Chen, X. Y. Xue, C. W. Sun, and M. S. Cao, Graphene/polyaniline nanorod arrays: Synthesis and excellent electromagnetic absorption properties, J. Mater. Chem. 22(40), 21679 (2012)
CrossRef ADS Google scholar
[103]
Y. L. Ren, C. L. Zhu, S. Zhang, C. Y. Li, Y. J. Chen, P. Gao, P. P. Yang, and Q. Y. Ouyang, Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: Synthesis and electromagnetic absorption properties, Nanoscale 5(24), 12296 (2013)
CrossRef ADS Google scholar
[104]
B. Shen, Y. Li, W. Zhai, and W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding, ACS Appl. Mater. Interfaces 8(12), 8050 (2016)
CrossRef ADS Google scholar
[105]
V. Eswaraiah, V. Sankaranarayanan, and S. Ramaprabhu, Functionalized graphene-PVDF foam composites for EMI shielding, Macromol. Mater. Eng. 296(10), 894 (2011)
CrossRef ADS Google scholar
[106]
H. B. Zhang, Q. Yan, W. G. Zheng, Z. He, and Z. Z. Yu, Tough graphene-polymer microcellular foams for electromagnetic interference shielding, ACS Appl. Mater. Interfaces 3(3), 918 (2011)
CrossRef ADS Google scholar
[107]
D. X. Yan, P. G. Ren, H. Pang, Q. Fu, M. B. Yang, and Z. M. Li, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite, J. Mater. Chem. 22(36), 18772 (2012)
CrossRef ADS Google scholar
[108]
H. Zhang, A. J. Xie, C. P. Wang, H. S. Wang, Y. H. Shen, and X. Y. Tian, Novel RGO/alpha-Fe2O3 composite hydrogel: Synthesis, characterization and high performance of electromagnetic wave absorption, J. Mater. Chem. A 1(30), 8547 (2013)
CrossRef ADS Google scholar
[109]
W. L. Song, X. T. Guan, L. Z. Fan, W. Q. Cao, C. Y. Wang, and M. S. Cao, Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding, Carbon 93, 151 (2015)
CrossRef ADS Google scholar
[110]
F. Wu, A. M. Xie, M. X. Sun, Y. Wang, and M. Y. Wang, Reduced graphene oxide (rGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption, J. Mater. Chem. A 3(27), 14358 (2015)
CrossRef ADS Google scholar
[111]
Y. Zhang, Y. Huang, T. F. Zhang, H. C. Chang, P. S. Xiao, H. H. Chen, Z. Y. Huang, and Y. S. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam, Adv. Mater. 27(12), 2049 (2015)
CrossRef ADS Google scholar
[112]
B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, and W. Zheng, Microcellular graphene foam for improved broadband electromagnetic interference shielding, Carbon 102, 154 (2016)
CrossRef ADS Google scholar
[113]
B. Shen, W. Zhai, M. Tao, J. Ling, and W. Zheng, Lightweight, multifunctional polyetherimide/ graphene@Fe3O4 composite foams for shielding of electromagnetic pollution, ACS Appl. Mater. Interfaces 5(21), 11383 (2013)
CrossRef ADS Google scholar
[114]
Y. Zhang, Y. Huang, H. H. Chen, Z. Y. Huang, Y. Yang, P. S. Xiao, Y. Zhou, and Y. S. Chen, Composition and structure control of ultralight graphene foam for highperformance microwave absorption, Carbon 105, 438 (2016)
CrossRef ADS Google scholar
[115]
Z. Chen, C. Xu, C. Ma, W. Ren, and H. M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding, Adv. Mater. 25(9), 1296 (2013)
CrossRef ADS Google scholar
[116]
J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. G. Zheng, Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding, ACS Appl. Mater. Interfaces 5(7), 2677 (2013)
CrossRef ADS Google scholar
[117]
J. He, P. Lyu, and P. Nachtigall, New two-dimensional Mn-based MXenes with room temperature ferromagnetism and half-metallicity, J. Mater. Chem. C 4(47), 11143 (2016)
CrossRef ADS Google scholar
[118]
F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo, and Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science 353(6304), 1137 (2016)
CrossRef ADS Google scholar
[119]
M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li, L. Zhang, and L. Cheng, Ti3C2 mxenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band, ACS Appl. Mater. Interfaces 8(32), 21011 (2016)
CrossRef ADS Google scholar
[120]
Y. Qing, W. Zhou, F. Luo, and D. Zhu, Titanium carbide (mxene) nanosheets as promising microwave absorbers, Ceram. Int. 42(14), 16412 (2016)
CrossRef ADS Google scholar
[121]
W. L. Feng, H. Luo, Y. Wang, S. F. Zeng, L. W. Deng, X. S. Zhou, H. B. Zhang, and S. M. Peng, Ti3C2 mxene: A promising microwave absorbing material, RSC Advances 8(5), 2398 (2018)
CrossRef ADS Google scholar
[122]
J. Liu, H. B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, and Z. Z. Yu, Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagneticinterference shielding, Adv. Mater. 29(38), 1702367 (2017)
CrossRef ADS Google scholar
[123]
R. H. Sun, H. B. Zhang, J. Liu, X. Xie, R. Yang, Y. Li, S. Hong, and Z. Z. Yu, Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding, Adv. Funct. Mater. 27(45), 1702807 (2017)
CrossRef ADS Google scholar
[124]
X. L. Li, X. W. Yin, M. K. Han, C. Q. Song, H. L. Xu, Z. X. Hou, L. T. Zhang, and L. F. Cheng, Ti3C2 mxenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties, J. Mater. Chem. C 5(16), 4068 (2017)
CrossRef ADS Google scholar
[125]
Y. B. Li, X. Zhou, J. Wang, Q. H. Deng, M. A. Li, S. Y. Du, Y. H. Han, J. Lee, and Q. Huang, Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance, RSC Advances 7(40), 24698 (2017)
CrossRef ADS Google scholar
[126]
Y. Qian, H. W. Wei, J. D. Dong, Y. Z. Du, X. J. Fang, W. H. Zheng, Y. T. Sun, and Z. X. Jiang, Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption,Ceram. Int. 43(14), 10757 (2017)
CrossRef ADS Google scholar
[127]
Y. Qing, H. Nan, F. Luo, and W. Zhou, Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers, RSC Advances 7(44), 27755 (2017)
CrossRef ADS Google scholar
[128]
H. B. Yang, J. J. Dai, X. Liu, Y. Lin, J. J. Wang, L. Wang, and F. Wang, Layered PVB/Ba3Co2Fe24O41/Ti3C2 mxene composite: Enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range, Mater. Chem. Phys. 200, 179 (2017)
CrossRef ADS Google scholar
[129]
M. K. Han, X. W. Yin, X. L. Li, B. Anasori, L. T. Zhang, L. F. Cheng, and Y. Gogotsi, Laminated and two-dimensional carbon-supported microwave absorbers derived from mxenes, ACS Appl. Mater. Interfaces 9(23), 20038 (2017)
CrossRef ADS Google scholar
[130]
X. Li, X. Yin, M. Han, C. Song, X. Sun, H. Xu, L. Cheng, and L. Zhang, A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx mxene, J. Mater. Chem. C 5(30), 7621 (2017)
CrossRef ADS Google scholar
[131]
X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, and G. Ji, A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance, J. Mater. Chem. C 4(28), 6816 (2016)
CrossRef ADS Google scholar
[132]
X. J. Zhang, S. Li, S. W. Wang, Z. J. Yin, J. Q. Zhu, A. P. Guo, G. S. Wang, P. G. Yin, and L. Guo, Selfsupported construction of three-dimensional MoS2 hierarchical nanospheres with tunable high-performance microwave absorption in broadband, J. Phys. Chem. C 120(38), 22019 (2016)
CrossRef ADS Google scholar
[133]
B. Quan, X. Liang, G. Xu, Y. Cheng, Y. Zhang, W. Liu, G. Ji, and Y. Du, A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation, New J. Chem. 41(3), 1259 (2017)
CrossRef ADS Google scholar
[134]
L. Bai, Y. Wang, F. Li, D. An, Z. Zhang, and Y. Liu, Enhanced electromagnetic wave absorption properties of MoS2-graphene hybrid nanosheets prepared by a hydrothermal method, J. Sol-Gel Sci. Technol. 84(1), 104 (2017)
CrossRef ADS Google scholar
[135]
A. Xie, M. Sun, K. Zhang, W. Jiang, F. Wu, and M. He, In situ growth of MoS2 nanosheets on reduced graphene oxide (rGO) surfaces: Interfacial enhancement of absorbing performance against electromagnetic pollution, Phys. Chem. Chem. Phys. 18(36), 24931 (2016)
CrossRef ADS Google scholar
[136]
Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu, and M. He, Hybrid of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber, ACS Appl. Mater. Interfaces 7(47), 26226 (2015)
CrossRef ADS Google scholar
[137]
X. Wang, W. Zhang, X. Ji, B. Zhang, M. Yu, W. Zhang, and J. Liu, 2D MoS2/graphene composites with excellent full Ku band microwave absorption, RSC Advances 6(108), 106187 (2016)
CrossRef ADS Google scholar
[138]
X. Ding, Y. Huang, S. Li, N. Zhang, and J. Wang, 3D architecture reduced graphene oxide-MoS2 composite: Preparation and excellent electromagnetic wave absorption performance, Compos. Part A: Appl. Sci. Manuf. 90, 424 (2016)
CrossRef ADS Google scholar
[139]
Y. Sun, W. Zhong, Y. Wang, X. Xu, T. Wang, L. Wu, and Y. Du, MoS2-based mixed-dimensional van der waals heterostructures: A new platform for excellent and controllable microwave-absorption performance, ACS Appl. Mater. Interfaces 9(39), 34243 (2017)
CrossRef ADS Google scholar
[140]
X. J. Zhang, S. W. Wang, G. S. Wang, Z. Li, A. P. Guo, J. Q. Zhu, D. P. Liu, and P. G. Yin, Facile synthesis of NiS2@MoS2 core-shell nanospheres for effective enhancement in microwave absorption, RSC Advances 7(36), 22454 (2017)
CrossRef ADS Google scholar
[141]
W. L. Zhang, D. Jiang, X. Wang, B. N. Hao, Y. D. Liu, and J. Liu, Growth of polyaniline nanoneedles on MoS2 nanosheets, tunable electroresponse, and electromagnetic wave attenuation analysis, J. Phys. Chem. C 121(9), 4989 (2017)
CrossRef ADS Google scholar
[142]
X. Ding, Y. Huang, S. Li, N. Zhang, and J. Wang, FeNi3 nanoalloy decorated on 3d architecture composite of reduced graphene oxide/molybdenum disulfide giving excellent electromagnetic wave absorption properties, J. Alloys Compd. 689, 208 (2016)
CrossRef ADS Google scholar
[143]
A. P. Guo, X. J. Zhang, S. W. Wang, J. Q. Zhu, L. Yang, and G. S. Wang, Excellent microwave absorption and electromagnetic interference shielding based on reduced graphene oxide@MoS2/poly(vinylidene fluoride) composites, ChemPlusChem 81(12), 1305 (2016)
CrossRef ADS Google scholar
[144]
M. Li, X. Cao, S. Zheng, and S. Qi, Ternary composites RGO/MoS2@Fe3O4: Synthesis and enhanced electromagnetic wave absorbing performance, J. Mater. Sci.: Mater. Electron. 28(22), 16802 (2017)
CrossRef ADS Google scholar
[145]
M. Osada and T. Sasaki, Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks, Adv. Mater. 24(2), 210 (2012)
CrossRef ADS Google scholar
[146]
R. Z. Ma and T. Sasaki, Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality, Acc. Chem. Res. 48(1), 136 (2015)
CrossRef ADS Google scholar
[147]
M. P. Gashti and S. Eslami, Structural, optical and electromagnetic properties of aluminum-clay nanocomposites, Superlattices Microstruct. 51(1), 135 (2012)
CrossRef ADS Google scholar
[148]
E. Y. Salih, Z. Abbas, S. H. H. Al Ali, and M. Z. Hussein, Dielectric behaviour of Zn/Al-NO3 LDHs filled with polyvinyl chloride composite at low microwave frequencies, Adv. Mater. Sci. Eng. 2014, 1 (2014)
CrossRef ADS Google scholar
[149]
F. Z. Lv, Y. Y. Wu, Y. H. Zhang, J. W. Shang, and P. K. Chu, Structure and magnetic properties of soft organic ZnAl-LDH/polyimide electromagnetic shielding composites, J. Mater. Sci. 47(4), 2033 (2012)
CrossRef ADS Google scholar
[150]
M. Parvinzadeh, and S. Eslami, Optical and electromagnetic characteristics of clay-iron oxide nanocomposites, Res. Chem. Intermed. 37(7), 771 (2011)
CrossRef ADS Google scholar
[151]
B. Quan, X. H. Liang, G. B. Ji, J. Lv, S. S. Dai, G. Y. Xu, and Y. W. Du, Laminated graphene oxidesupported high-efficiency microwave absorber fabricated by an in-situ growth approach, Carbon 129, 310 (2018)
CrossRef ADS Google scholar
[152]
H. Lv, H. Zhang, and G. Ji, Development of novel graphene/g-C3N4 composite with broad-frequency and light-weight features, Part. Part. Syst. Charact. 33(9), 656 (2016)
CrossRef ADS Google scholar
[153]
A. Murk and I. Zivkovic, Boron nitride loading for thermal conductivity improvement of composite microwave absorbers, Electron. Lett. 48(18), 1130 (2012)
CrossRef ADS Google scholar
[154]
Y. Kang, Z. Jiang, T. Ma, Z. Chu, and G. Li, Hybrids of reduced graphene oxide and hexagonal boron nitride: Lightweight absorbers with tunable and highly efficient microwave attenuation properties, ACS Appl. Mater. Interfaces 8(47), 32468 (2016)
CrossRef ADS Google scholar
[155]
X. Zhang, X. Zhang, M. Yang, S. Yang, H. Wu, S. Guo, and Y. Wang, Ordered multilayer film of (graphene oxide/polymer and boron nitride/polymer) nanocomposites: An ideal EMI shielding material with excellent electrical insulation and high thermal conductivity, Compos. Sci. Technol. 136, 104 (2016)
CrossRef ADS Google scholar
[156]
F. Wu, A. Xie, M. X. Sun, W. C. Jiang, and K. Zhang, Few-layer black phosphorus: A bright future in electromagnetic absorption, Mater. Lett. 193, 30 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(5478 KB)

Accesses

Citations

Detail

Sections
Recommended

/