Machine learning of frustrated classical spin models (II): Kernel principal component analysis

Ce Wang, Hui Zhai

PDF(2044 KB)
PDF(2044 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 130507. DOI: 10.1007/s11467-018-0798-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Machine learning of frustrated classical spin models (II): Kernel principal component analysis

Author information +
History +

Abstract

In this work, we apply a principal component analysis (PCA) method with a kernel trick to study the classification of phases and phase transitions in classical XY models of frustrated lattices. Compared to our previous work with the linear PCA method, the kernel PCA can capture nonlinear functions. In this case, the Z2 chiral order of the classical spins in these lattices is indeed a nonlinear function of the input spin configurations. In addition to the principal component revealed by the linear PCA, the kernel PCA can find two more principal components using the data generated by Monte Carlo simulation for various temperatures as the input. One of them is related to the strength of the U(1) order parameter, and the other directly manifests the chiral order parameter that characterizes the Z2 symmetry breaking. For a temperature-resolved study, the temperature dependence of the principal eigenvalue associated with the Z2 symmetry breaking clearly shows second-order phase transition behavior.

Keywords

machine learning / classical XY model / kernel PCA / frustrated lattice

Cite this article

Download citation ▾
Ce Wang, Hui Zhai. Machine learning of frustrated classical spin models (II): Kernel principal component analysis. Front. Phys., 2018, 13(5): 130507 https://doi.org/10.1007/s11467-018-0798-7

References

[1]
C. Wang and H. Zhai, Machine learning of frustrated classical spin models (I): Principal component analysis, Phys. Rev. B 96(14), 144432 (2017)
CrossRef ADS Google scholar
[2]
L. Wang, Discovering phase transitions with unsupervised learning, Phys. Rev. B 94(19), 195105 (2016)
CrossRef ADS Google scholar
[3]
J. Carrasquilla and R. G. Melko, Machine learning phases of matter, Nat. Phys. 13(5), 431 (2017)
[4]
E. P. L. van Nieuwenburg, Y. H. Liu, and S. D. Huber, Learning phase transitions by confusion, Nat. Phys. 13(5), 435 (2017)
[5]
G. Torlai and R. G. Melko, Learning thermodyamics with Boltzmann machines, Phys. Rev. B 94(16), 165134 (2016)
CrossRef ADS Google scholar
[6]
S. Wetzel, Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders, Phys. Rev. E 96(2), 022140 (2017)
CrossRef ADS Google scholar
[7]
P. Ponte and R. G. Melko, Kernel methods for interpretable machine learning of order parameters, Phys. Rev. B 96(20), 205146 (2017)
CrossRef ADS Google scholar
[8]
W. J. Hu, R. Singh, and R. Scalettar, Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination, Phys. Rev. E 95(6), 062122 (2017)
CrossRef ADS Google scholar
[9]
K. Ch’ng, N. Vazquez, and E. Khatami, Unsupervised machine learning account of magnetic transitions in the Hubbard model, Phys. Rev. E 97(1), 013306 (2018)
CrossRef ADS Google scholar
[10]
N. C. Costa, W. J. Hu, Z. J. Bai, R. Scalettar, and R. Singh, Principal component analysis for fermionic critical points, Phys. Rev. B 96(19), 195138 (2017)
CrossRef ADS Google scholar
[11]
S. Wetzel and M. Scherzer, Machine learning of explicit order parameters: From the Ising model to SU(2) lattice gauge theory, Phys. Rev. B 96(18), 184410 (2017)
CrossRef ADS Google scholar
[12]
K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami, Machine learning phases of strongly correlated fermions, Phys. Rev. X 7(3), 031038 (2017)
CrossRef ADS Google scholar
[13]
P. Broecker, J. Carrasquilla, R. G. Melko, and S. Trebst, Machine learning quantum phases of matter beyond the fermion sign problem, Sci. Rep. 7(1), 8823 (2017)
CrossRef ADS Google scholar
[14]
P. Broecker, F. F. Assaad, and S. Trebst, Quantum phase recognition via unsupervised machine learning, arXiv: 1707.00663 (2017)
[15]
M. Beach, A. Golubeva, and R. G. Melko, Machine learning vortices at the Kosterlitz–Thouless transition, Phys. Rev. B 97(4), 045207 (2018)
CrossRef ADS Google scholar
[16]
Y. Zhang and E. Kim, Quantum loop topography for machine learning, Phys. Rev. Lett. 118(21), 216401 (2017)
CrossRef ADS Google scholar
[17]
Y. Zhang, R. G. Melko, and E. Kim, Machine learning Z2 quantum spin liquids with quasiparticle statistics, Phys. Rev. B 96(24), 245119 (2017)
CrossRef ADS Google scholar
[18]
P. Zhang, H. Shen, and H. Zhai, Machine learning topological invariants with neural networks, Phys. Rev. Lett. 120(6), 066401 (2018)
CrossRef ADS Google scholar
[19]
J. Villain, Spin glass with non-random interactions, J. Phys. Chem. 10, 1717 (1977)
CrossRef ADS Google scholar
[20]
J. Villain, Two-level systems in spin-glass model (I): General formalism and two-dimensional model, J. Phys. Chem. 10, 4793 (1977)
CrossRef ADS Google scholar
[21]
D. H. Lee, J. D. Joannopoulos, J. W. Negele, and D. P. Landau, Discrete-symmetry breaking and novel critical phenomena in an antiferromagnetic planar (XY) model in two dimensions, Phys. Rev. Lett. 52(6), 433 (1984)
CrossRef ADS Google scholar
[22]
S. Miyashita and H. Shiba, Nature of phase transition of the two-dimensional antiferromagnetic plane rotator model on the triangular lattice, J. Phys. Soc. Jpn. 53(3), 1145 (1984)
CrossRef ADS Google scholar
[23]
S. Lee and K. C. Lee, Phase transitions in the fully frustrated XY model studied with use of the microcanonical Monte Carlo technique, Phys. Rev. B 49(21), 15184 (1994)
CrossRef ADS Google scholar
[24]
S. Korshunov, Kink pairs unbinding on domain walls and the sequence of phase transitions in fully frustrated XYmodels, Phys. Rev. Lett. 88(16), 167007 (2002)
CrossRef ADS Google scholar
[25]
M. Hasenbusch, A. Pelissetto, and E. Vicari, Transitions and crossover phenomena in fully frustrated XYsystems, Phys. Rev. B 72(18), 184502 (2005)
CrossRef ADS Google scholar
[26]
T. Obuchi and H. Kawamura, Spin and chiral orderings of the antiferromagnetic XYmodel on the triangular lattice and their critical properties, J. Phys. Soc. Jpn. 81(5), 054003 (2012)
CrossRef ADS Google scholar
[27]
J. P. Lv, T. M. Garoni, and Y. J. Deng, Phase transitions in XYantiferromagnets on plane triangulations, Phys. Rev. B 87(2), 024108 (2013)
CrossRef ADS Google scholar
[28]
P. Olsson, Monte Carlo analysis of the two-dimensional XYmodel (II): Comparison with the Kosterlitz renormalization-group equations, Phys. Rev. B 52(6), 4526 (1995)
CrossRef ADS Google scholar
[29]
T. Ohta and D. Jasnow, XYmodel and the superfluid density in two dimensions, Phys. Rev. B 20(1), 139 (1979)
CrossRef ADS Google scholar
[30]
H. Weber and P. Minnhagen, Monte Carlo determination of the critical temperature for the two-dimensional XYmodel, Phys. Rev. B 37(10), 5986 (1988)
CrossRef ADS Google scholar
[31]
C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2007

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2044 KB)

Accesses

Citations

Detail

Sections
Recommended

/