Environmental engineering of transition metal dichalcogenide optoelectronics

Trevor LaMountain, Erik J. Lenferink, Yen-Jung Chen, Teodor K. Stanev, Nathaniel P. Stern

PDF(25604 KB)
PDF(25604 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 138114. DOI: 10.1007/s11467-018-0795-x
REVIEW ARTICLE
REVIEW ARTICLE

Environmental engineering of transition metal dichalcogenide optoelectronics

Author information +
History +

Abstract

The explosion of interest in two-dimensional van der Waals materials has been in many ways driven by their layered geometry. This feature makes possible numerous avenues for assembling and manipulating the optical and electronic properties of these materials. In the specific case of monolayer transition metal dichalcogenide semiconductors, the direct band gap combined with the flexibility for manipulation of layers has made this class of materials promising for optoelectronics. Here, we review the properties of these layered materials and the various means of engineering these properties for optoelectronics. We summarize approaches for control that modify their structural and chemical environment, and we give particular detail on the integration of these materials into engineered optical fields to control their optical characteristics. This combination of controllability from their layered surface structure and photonic environment provide an expansive landscape for novel optoelectronic phenomena.

Keywords

transition metal dichalcogenides / optoelectronics / van der Waals materials / heterostructures / excitons

Cite this article

Download citation ▾
Trevor LaMountain, Erik J. Lenferink, Yen-Jung Chen, Teodor K. Stanev, Nathaniel P. Stern. Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys., 2018, 13(4): 138114 https://doi.org/10.1007/s11467-018-0795-x

References

[1]
K. Barnham and G. Duggan, A new approach to highefficiency multi-band-gap solar cells, J. Appl. Phys. 67(7), 3490 (1990)
CrossRef ADS Google scholar
[2]
N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Z. I. Alferov, and D. Bimberg, Quantum dot heterostructures: Fabrication, properties, lasers, Semiconductors 32(4), 343 (1998)
CrossRef ADS Google scholar
[3]
C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials, Sol. Energy Mater. Sol. Cells 91(4), 238 (2007)
CrossRef ADS Google scholar
[4]
U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE 90(6), 1022 (2002)
CrossRef ADS Google scholar
[5]
H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9(3), 205 (2010)
CrossRef ADS Google scholar
[6]
M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61(21), 2472 (1988)
CrossRef ADS Google scholar
[7]
S. Bader and S. Parkin, Spintronics, Annu. Rev.: Condens. Matter Phys. 1(1), 71 (2010)
CrossRef ADS Google scholar
[8]
K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)
CrossRef ADS Google scholar
[9]
M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, R. M. III Ager, Wallace, and A. Javey, Recombination kinetics and effects of superacid treatment in sulfur- and selenium-based transition metal dichalcogenides, Nano Lett. 16(4), 2786 (2016)
CrossRef ADS Google scholar
[10]
A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Optical generation of excitonic valley coherence in monolayer WSe2,Nat. Nanotechnol. 8(9), 634 (2013)
CrossRef ADS Google scholar
[11]
K. Novoselov and A. C. Neto, Two-dimensional crystalsbased heterostructures: Materials with tailored properties, Phys. Scr. 2012, 014006 (2012)
CrossRef ADS Google scholar
[12]
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
CrossRef ADS Google scholar
[13]
K. Novoselov, A. Mishchenko, A. Carvalho, and A. C. Neto, 2D materials and van der Waals heterostructures,Science 353(6298), aac9439 (2016)
CrossRef ADS Google scholar
[14]
D. Jariwala, T. J. Marks, and M. C. Hersam, Mixeddimensional van der Waals heterostructures, Nat. Mater. 16(2), 170 (2017)
CrossRef ADS Google scholar
[15]
B. Radisavljevic, M. B. Whitwick, and A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano 5(12), 9934 (2011)
CrossRef ADS Google scholar
[16]
D. Ovchinnikov, A. Allain, Y.S. Huang, D. Dumcenco, and A. Kis, Electrical transport properties of singlelayer WS2,ACS Nano 8(8), 8174 (2014)
CrossRef ADS Google scholar
[17]
J. Lee, K. F. Mak, and J. Shan, Electrical control of the valley Hall effect in bilayer MoS2 transistors, Nat. Nanotechnol. 11(5), 421 (2016)
CrossRef ADS Google scholar
[18]
Z. Wang, J. Shan, and K. F. Mak, Valley- and spinpolarized Landau levels in monolayer WSe2, Nat. Nanotechnol. 12(2), 144 (2016)
CrossRef ADS Google scholar
[19]
D. Wu, X. Li, L. Luan, X. Wu, W. Li, M. N. Yogeesh, R. Ghosh, Z. Chu, D. Akinwande, Q. Niu, and K. Lai, Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors, Proc. Natl. Acad. Sci. USA 113(31), 8583 (2016)
CrossRef ADS Google scholar
[20]
Y. Jia, T. K. Stanev, E. J. Lenferink, and N. P. Stern, Enhanced conductivity along lateral homojunction interfaces of atomically thin semiconductors, 2D Materials 4, 021012 (2017)
[21]
S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts, Nano Lett. 13(1), 100 (2013)
CrossRef ADS Google scholar
[22]
B. Radisavljevic, M. B. Whitwick, and A. Kis, Smallsignal amplifier based on single-layer MoS2, Appl. Phys. Lett. 101(4), 043103 (2012)
CrossRef ADS Google scholar
[23]
J. Pu, Y. Yomogida, K. K. Liu, L. J. Li, Y. Iwasa, and T. Takenobu, Highly flexible MoS2 thin-film transistors with ion gel dielectrics, Nano Lett. 12(8), 4013 (2012)
CrossRef ADS Google scholar
[24]
H.Y. Chang, S. Yang, J. Lee, L. Tao, W.S. Hwang, D. Jena, N. Lu, and D. Akinwande, High-performance, highly bendable MoS2 transistors with high-Kdielectrics for flexible low-power systems, ACS Nano 7, 5446 (2013)
CrossRef ADS Google scholar
[25]
K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors, Nanoscale 6(18), 10530 (2014)
CrossRef ADS Google scholar
[26]
H. Yu, D. Talukdar, W. Xu, J. B. Khurgin, and Q. Xiong, Charge-induced second-harmonic generation in bilayer WSe2, Nano Lett. 15(8), 5653 (2015)
CrossRef ADS Google scholar
[27]
G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,Phys. Rev. Lett. 114(9), 097403 (2015)
CrossRef ADS Google scholar
[28]
K. L. Seyler, J. R. Schaibley, P. Gong, P. Rivera, A. M. Jones, S. Wu, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Electrical control of second-harmonic generation in a WSe2 monolayer transistor, Nat. Nanotechnol. 10(5), 407 (2015)
CrossRef ADS Google scholar
[29]
Z. Sun, A. Martinez, and F. Wang, Optical modulators with 2D layered material, Nat. Photon. 10(4), 227 (2016)
CrossRef ADS Google scholar
[30]
Y. M. He, G. Clark, J. R. Schaibley, Y. He, M. C. Chen, Y. J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.Y. Lu, and J. W. Pan, Single quantum emitters in monolayer semiconductors, Nat. Nanotechnol. 10(6), 497 (2015)
CrossRef ADS Google scholar
[31]
A. Branny, G. Wang, S. Kumar, C. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning, Appl. Phys. Lett. 108(14), 142101 (2016)
CrossRef ADS Google scholar
[32]
S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, Straininduced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2, Nano Lett. 15(11), 7567 (2015)
CrossRef ADS Google scholar
[33]
A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoǧlu, Optically active quantum dots in monolayer WSe2, Nat. Nanotechnol. 10(6), 491 (2015)
CrossRef ADS Google scholar
[34]
J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, Surface plasmonenhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays, Small 11(20), 2392 (2015)
CrossRef ADS Google scholar
[35]
N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer, Nat. Commun. 7, 13328 (2016)
CrossRef ADS Google scholar
[36]
S. Butun, E. Palacios, J. D. Cain, Z. Liu, V. P. Dravid, and K. Aydin, Quantifying plasmon-enhanced light absorption in monolayer WS2 films, ACS Appl. Mater. Interfaces 9(17), 15044 (2017)
CrossRef ADS Google scholar
[37]
N. Lundt, P. Nagler, A. Nalitov, S. Klembt, M. Wurdack, S. Stoll, T. Harder, S. Betzold, V. Baumann, A. Kavokin, et al., Valley polarized relaxation and upconversion luminescence from tamm-plasmon trionpolaritons with a MoSe2 monolayer,2D Materials 4, 025096 (2017)
[38]
T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons, ACS Photon. 5(4), 1281 (2018)
CrossRef ADS Google scholar
[39]
T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, Polaritons in layered twodimensional materials, Nat. Mater. 16(2), 182 (2017)
CrossRef ADS Google scholar
[40]
D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, Polaritons in van der Waals materials, Science 354(6309), aag1992 (2016)
CrossRef ADS Google scholar
[41]
X. Liu, T. Galfsky, Z. Sun, F. Xia, E. C. Lin, Y. H. Lee, S. Kéna-Cohen, and V. M. Menon, Strong light–matter coupling in two-dimensional atomic crystals, Nat. Photon. 9(1), 30 (2015)
CrossRef ADS Google scholar
[42]
Y. J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, Valley-polarized exciton–polaritons in a monolayer semiconductor, Nat. Photon. 11(7), 431 (2017)
CrossRef ADS Google scholar
[43]
J. Pak, J. Jang, K. Cho, T. Y. Kim, J. K. Kim, Y. Song, W. K. Hong, M. Min, H. Lee, and T. Lee, Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine, Nanoscale 7(44), 18780 (2015)
CrossRef ADS Google scholar
[44]
L. Britnell, R. Ribeiro, A. Eckmann, R. Jalil, B. Belle, A. Mishchenko, Y. J. Kim, R. Gorbachev, T. Georgiou, S. Morozov, et al., Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)
CrossRef ADS Google scholar
[45]
A. Pospischil, M. M. Furchi, and T. Mueller, Solarenergy conversion and light emission in an atomic monolayer p–n diode, Nat. Nanotechnol. 9(4), 257 (2014)
CrossRef ADS Google scholar
[46]
F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. Haigh, A. Geim, A. Tartakovskii, and K. S. Novoselov, Light-emitting diodes by band-structure engineering in van der Waals heterostructures, Nat. Mater. 14(3), 301 (2015)
CrossRef ADS Google scholar
[47]
J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions, Nat. Nanotechnol. 9(4), 268 (2014)
CrossRef ADS Google scholar
[48]
B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide, Nat. Nanotechnol. 9(4), 262 (2014)
CrossRef ADS Google scholar
[49]
Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, Monolayer excitonic laser, Nat. Photon. 9(11), 733 (2015)
CrossRef ADS Google scholar
[50]
J. Shang, C. Cong, Z. Wang, N. Peimyoo, L. Wu, C. Zou, Y. Chen, X. Y. Chin, J. Wang, C. Soci, W. Huang, and T. Yu, Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers, Nat. Commun. 8(1), 543 (2017)
CrossRef ADS Google scholar
[51]
L. Peng, Y. Yuan, G. Li, X. Yang, J. J. Xian, C. J. Yi, Y. G. Shi, and Y. S. Fu, Observation of topological states residing at step edges of WTe2, Nat. Commun. 8(1), 659 (2017)
CrossRef ADS Google scholar
[52]
I. Belopolski, D. S. Sanchez, Y. Ishida, X. Pan, P. Yu, S. Y. Xu, G. Chang, T. R. Chang, H. Zheng, N. Alidoust, et al., Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2, Nat. Commun. 7, 13643 (2016)
CrossRef ADS Google scholar
[53]
Y. Zhang, T. Oka, R. Suzuki, J. Ye, and Y. Iwasa, Electrically switchable chiral light-emitting transistor, Science 344(6185), 725 (2014)
CrossRef ADS Google scholar
[54]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef ADS Google scholar
[55]
M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,Nat. Chem. 5(4), 263 (2013)
CrossRef ADS Google scholar
[56]
H. Yu, X. Cui, X. Xu, and W. Yao, Valley excitons in two-dimensional semiconductors, Natl. Sci. Rev. 2(1), 57 (2015)
CrossRef ADS Google scholar
[57]
J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, Valleytronics in 2D materials, Nat. Rev. Mater. 1(11), 16055 (2016)
CrossRef ADS Google scholar
[58]
W. T. Hsu, Y. L. Chen, C. H. Chen, P. S. Liu, T. H. Hou, L. J. Li, and W. H. Chang, Optically initialized robust valley-polarized holes in monolayer WSe2, Nat. Commun. 6, 8963 (2015)
CrossRef ADS Google scholar
[59]
X. X. Zhang, T. Cao, Z. Lu, Y. C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, Magnetic brightening and control of dark excitons in monolayer WSe2, Nat. Nanotechnol. 12(9), 883 (2017)
CrossRef ADS Google scholar
[60]
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef ADS Google scholar
[61]
T. Cheiwchanchamnangij and W. R. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2, Phys. Rev. B 85(20), 205302 (2012)
CrossRef ADS Google scholar
[62]
A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113(7), 076802 (2014)
CrossRef ADS Google scholar
[63]
K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)
CrossRef ADS Google scholar
[64]
J. Klein, J. Wierzbowski, A. Regler, J. Becker, F. Heimbach, K. Müller, M. Kaniber, and J. J. Finley, Stark effect spectroscopy of mono- and few-layer MoS2, Nano Lett. 16(3), 1554 (2016)
CrossRef ADS Google scholar
[65]
K. C. Wang, T. K. Stanev, D. Valencia, J. Charles, A. Henning, V. K. Sangwan, A. Lahiri, D. Mejia, P. Sarangapani, M. Povolotskyi, et al., Control of interlayer physics in 2H transition metal dichalcogenides, J. Appl. Phys. 122(22), 224302 (2017)
CrossRef ADS Google scholar
[66]
Z. Wang, Y. H. Chiu, K. Honz, K. F. Mak, and J. Shan, Electrical tuning of interlayer exciton gases in WSe2 bilayers, Nano Lett. 18(1), 137 (2018)
CrossRef ADS Google scholar
[67]
J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Electrical control of neutral and charged excitons in a monolayer semiconductor, Nat. Commun. 4, 1474 (2013)
CrossRef ADS Google scholar
[68]
D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
CrossRef ADS Google scholar
[69]
A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Falko, k·p theory for two-dimensional transition metal dichalcogenide semiconductors, 2D Materials 2, 022001 (2015)
[70]
X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys. 10(5), 343 (2014)
[71]
T. Yu and M. Wu, Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS2, Phys. Rev. B 89(20), 205303 (2014)
CrossRef ADS Google scholar
[72]
W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B 77(23), 235406 (2008)
CrossRef ADS Google scholar
[73]
K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, The valley Hall effect in MoS2 transistors, Science 344(6191), 1489 (2014)
CrossRef ADS Google scholar
[74]
A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles, Magneto-oscillatory conductance in silicon surfaces, Phys. Rev. Lett. 16(20), 901 (1966)
CrossRef ADS Google scholar
[75]
D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano 8(2), 1102 (2014)
CrossRef ADS Google scholar
[76]
Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)
CrossRef ADS Google scholar
[77]
W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, Recent development of twodimensional transition metal dichalcogenides and their applications, Mater. Today 20(3), 116 (2017)
CrossRef ADS Google scholar
[78]
M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, Mechanisms of photoconductivity in atomically thin MoS2, Nano Lett. 14(11), 6165 (2014)
CrossRef ADS Google scholar
[79]
C.-C. Wu, D. Jariwala, V. K. Sangwan, T. J. Marks, M. C. Hersam, and L. J. Lauhon, Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy, J. Phys. Chem. Lett. 4(15), 2508 (2013)
CrossRef ADS Google scholar
[80]
S. L. Howell, D. Jariwala, C. C. Wu, K. S. Chen, V. K. Sangwan, J. Kang, T. J. Marks, M. C. Hersam, and L. J. Lauhon, Investigation of band-offsets at monolayer–multilayer MoS2 junctions by scanning photocurrent microscopy, Nano Lett. 15(4), 2278 (2015)
CrossRef ADS Google scholar
[81]
M. Tosun, D. Fu, S. B. Desai, C. Ko, J. Seuk Kang, D. H. Lien, M. Najmzadeh, S. Tongay, J. Wu, and A. Javey, MoS2 heterojunctions by thickness modulation, Sci. Rep. 5(1), 10990 (2015)
CrossRef ADS Google scholar
[82]
H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)
CrossRef ADS Google scholar
[83]
T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Valleyselective circular dichroism of monolayer molybdenum disulphide,Nat. Commun. 3(1), 887 (2012)
CrossRef ADS Google scholar
[84]
T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, Low-temperature photocarrier dynamics in monolayer MoS2, Appl. Phys. Lett. 99(10), 102109 (2011)
CrossRef ADS Google scholar
[85]
G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2, Phys. Rev. B 90(7), 075413 (2014)
CrossRef ADS Google scholar
[86]
D. Lagarde, L. Bouet, X. Marie, C. Zhu, B. Liu, T. Amand, P. Tan, and B. Urbaszek, Carrier and polarization dynamics in monolayer MoS2, Phys. Rev. Lett. 112(4), 047401 (2014)
CrossRef ADS Google scholar
[87]
G. Wang, E. Palleau, T. Amand, S. Tongay, X. Marie, and B. Urbaszek, Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe2 monolayers, Appl. Phys. Lett. 106(11), 112101 (2015)
CrossRef ADS Google scholar
[88]
C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, Exciton radiative lifetime in transition metal dichalcogenide monolayers, Phys. Rev. B 93(20), 205423 (2016)
CrossRef ADS Google scholar
[89]
G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, J. Lupton, R. Bratschitsch, C. Schller, and T. Korn, Valley dynamics of excitons in monolayer dichalcogenides, physica status solidi RRL 11, 1700131 (2017)
[90]
L. Yang, N. A. Sinitsyn, W. Chen, J. Yuan, J. Zhang, J. Lou, and S. A. Crooker, Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2, Nat. Phys. 11(10), 830 (2015)
[91]
X. Song, S. Xie, K. Kang, J. Park, and V. Sih, Longlived hole spin/valley polarization probed by Kerr rotation in monolayer WSe2, Nano Lett. 16(8), 5010 (2016)
CrossRef ADS Google scholar
[92]
T. Yan, S. Yang, D. Li, and X. Cui, Long valley relaxation time of free carriers in monolayer WSe2,Phys. Rev. B 95(24), 241406 (2017)
CrossRef ADS Google scholar
[93]
P. Dey, L. Yang, C. Robert, G. Wang, B. Urbaszek, X. Marie, and S. A. Crooker, Gate-controlled spin-valley locking of resident carriers in WSe2 monolayers, Phys. Rev. Lett. 119(13), 137401 (2017)
CrossRef ADS Google scholar
[94]
G. Aivazian, Z. Gong, A. M. Jones, R.L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic control of valley pseudospin in monolayer WSe2, Nat. Phys. 11, 148 (2015)
[95]
A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoǧlu, Valley Zeeman effect in elementary optical excitations of monolayer WSe2, Nat. Phys. 11(2), 141 (2015)
[96]
Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, Valley splitting and polarization by the Zeeman effect in monolayer MoSe2, Phys. Rev. Lett. 113(26), 266804 (2014)
CrossRef ADS Google scholar
[97]
D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer MoSe2, Phys. Rev. Lett. 114(3), 037401 (2015)
CrossRef ADS Google scholar
[98]
M. Molas, C. Faugeras, A. Slobodeniuk, K. Nogajewski, M. Bartos, D. Basko, and M. Potemski, Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides, 2D Materials 4, 021003 (2017)
[99]
G. Wang, M. M. Glazov, C. Robert, T. Amand, X. Marie, and B. Urbaszek, Double resonant Raman scattering and valley coherence generation in monolayer WSe2,Phys. Rev. Lett. 115(11), 117401 (2015)
CrossRef ADS Google scholar
[100]
G. Wang, X. Marie, B. L. Liu, T. Amand, C. Robert, F. Cadiz, P. Renucci, and B. Urbaszek, Control of exciton valley coherence in transition metal dichalcogenide monolayers, Phys. Rev. Lett. 117(18), 187401 (2016)
CrossRef ADS Google scholar
[101]
Z. Ye, D. Sun, and T. F. Heinz, Optical manipulation of valley pseudospin, Nat. Phys. 13, 26 (2016)
[102]
R. Schmidt, A. Arora, G. Plechinger, P. Nagler, A. G. del Águila, M. V. Ballottin, P. C. Christianen, S. M. de Vasconcellos, C. Schüller, T. Korn, and R. Bratschitsch, Magnetic-field-induced rotation of polarized light emission from monolayer WS2, Phys. Rev. Lett. 117(7), 077402 (2016)
CrossRef ADS Google scholar
[103]
F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures, Phys. Rev. X 7(2), 021026 (2017)
CrossRef ADS Google scholar
[104]
N. Yoshikawa, S. Tani, and K. Tanaka, Raman-like resonant secondary emission causes valley coherence in CVD-grown monolayer MoS2, Phys. Rev. B 95(11), 115419 (2017)
CrossRef ADS Google scholar
[105]
K. Hao, G. Moody, F.Wu, C. K. Dass, L. Xu, C.-H. Chen, L. Sun, M.-Y. Li, L.-J. Li, A. H. MacDonald, and X. Li, Direct measurement of exciton valley coherence in monolayer WSe2, Nat. Phys. 12, 677 (2016)
[106]
N. Ubrig, S. Jo, M. Philippi, D. Costanzo, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping, Nano Lett. 17(9), 5719 (2017)
CrossRef ADS Google scholar
[107]
M. Onga, Y. Zhang, T. Ideue, and Y. Iwasa, Exciton Hall effect in monolayer MoS2, Nat. Mater. 16(12), 1193 (2017)
CrossRef ADS Google scholar
[108]
J. Lee, Z. Wang, H. Xie, K. F. Mak, and J. Shan, Valley magnetoelectricity in single-layer MoS2, Nat. Mater. 16(9), 887 (2017)
CrossRef ADS Google scholar
[109]
Y. Kato, R. Myers, A. Gossard, and D. Awschalom, Observation of the spin Hall effect in semiconductors, Science 306(5703), 1910 (2004)
CrossRef ADS Google scholar
[110]
M. Glazov and S. Ganichev, High frequency electric field induced nonlinear effects in graphene, Phys. Rep. 535(3), 101 (2014)
CrossRef ADS Google scholar
[111]
M. Eginligil, B. Cao, Z. Wang, X. Shen, C. Cong, J. Shang, C. Soci, and T. Yu, Dichroic spin–valley photocurrent in monolayer molybdenum disulphide, Nat. Commun. 6, 7636 (2015)
CrossRef ADS Google scholar
[112]
H. Guan, N. Tang, X. Xu, L. Shang, W. Huang, L. Fu, X. Fang, J. Yu, C. Zhang, X. Zhang, L. Dai, Y. Chen, W. Ge, and B. Shen, Photon wavelength dependent valley photocurrent in multilayer MoS2, Phys. Rev. B 96(24), 241304 (2017)
CrossRef ADS Google scholar
[113]
H. Yuan, X. Wang, B. Lian, H. Zhang, X. Fang, B. Shen, G. Xu, Y. Xu, S. C. Zhang, H. Y. Hwang, and Y. Cui, Generation and electric control of spin–valleycoupled circular photogalvanic current in WSe2, Nat. Nanotechnol. 9(10), 851 (2014)
CrossRef ADS Google scholar
[114]
A. V. Stier, N. P. Wilson, G. Clark, X. Xu, and S. A. Crooker, Probing the influence of dielectric environment on excitons in monolayer WSe2: Insight from high magnetic fields, Nano Lett. 16(11), 7054 (2016)
CrossRef ADS Google scholar
[115]
M. Buscema, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2, Nano Res. 7(4), 561 (2014)
CrossRef ADS Google scholar
[116]
S. Latini, T. Olsen, and K. S. Thygesen, Excitons in van der Waals heterostructures: The important role of dielectric screening, Phys. Rev. B 92(24), 245123 (2015)
CrossRef ADS Google scholar
[117]
H. Isago, Optical Spectra of Phthalocyanines and Related Compounds, Springer, 2015
CrossRef ADS Google scholar
[118]
X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, Raman enhancement effect on twodimensional layered materials: Graphene, h-BN and MoS2, Nano Lett. 14(6), 3033 (2014)
CrossRef ADS Google scholar
[119]
C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y.H. Lee, and J. R. Lombardi, Ultrahigh Raman enhancement on monolayer MoS2, ACS Photon. 3(7), 1164 (2016)
CrossRef ADS Google scholar
[120]
J. F. Arenas, M. S. Woolley, J. C. Otero, and J. I. Marcos, Charge-transfer processes in surface-enhanced Raman scattering, Franck–Condon active vibrations of pyrazine, J. Phys. Chem. 100(8), 3199 (1996)
CrossRef ADS Google scholar
[121]
D. Jariwala, S. L. Howell, K. S. Chen, J. Kang, V. K. Sangwan, S. A. Filippone, R. Turrisi, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2, Nano Lett. 16(1), 497 (2016)
CrossRef ADS Google scholar
[122]
A. Raja, A. Montoya-Castillo, J. Zultak, X. X. Zhang, Z. Ye, C. Roquelet, D. A. Chenet, A. M. van der Zande, P. Huang, S. Jockusch, J. Hone, D. R. Reichman, L. E. Brus, and T. F. Heinz, Energy transfer from quantum dots to graphene and MoS2: The role of absorption and screening in two-dimensional materials, Nano Lett. 16(4), 2328 (2016)
CrossRef ADS Google scholar
[123]
T. Guo, S. Sampat, K. Zhang, J. A. Robinson, S. M. Rupich, Y. J. Chabal, Y. N. Gartstein, and A. V. Malko, Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films, Sci. Rep. 7, 41967 (2017)
CrossRef ADS Google scholar
[124]
S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, Dyesensitized MoS2 photodetector with enhanced spectral photoresponse, ACS Nano 8(8), 8285 (2014)
CrossRef ADS Google scholar
[125]
S. Bettis Homan, V. K. Sangwan, I. Balla, H. Bergeron, E. A. Weiss, and M. C. Hersam, Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic Pentacene–MoS2 van der Waals heterojunction, Nano Lett. 17(1), 164 (2017)
CrossRef ADS Google scholar
[126]
F. Prins, A. J. Goodman, and W. A. Tisdale, Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2, Nano Lett. 14(11), 6087 (2014)
CrossRef ADS Google scholar
[127]
D. Prasai, A. R. Klots, A. Newaz, J. S. Niezgoda, N. J. Orfield, C. A. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. I. Bolotin, Electrical control of near-field energy transfer between quantum dots and two-dimensional semiconductors, Nano Lett. 15(7), 4374 (2015)
CrossRef ADS Google scholar
[128]
M. Amani, D. H.Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, K. C. Santosh, M. Dubey, et al., Near-unity photoluminescence quantum yield in MoS2, Science 350(6264), 1065 (2015)
CrossRef ADS Google scholar
[129]
D. M. Sim, M. Kim, S. Yim, M.J. Choi, J. Choi, S. Yoo, and Y. S. Jung, Controlled doping of vacancy-containing few-layer MoS2viahighly stable thiol-based molecular chemisorption, ACS Nano 9(12), 12115 (2015)
CrossRef ADS Google scholar
[130]
H. V. Han, A. Y. Lu, L. S. Lu, J. K. Huang, H. Li, C. L. Hsu, Y. C. Lin, M. H. Chiu, K. Suenaga, C. W. Chu, H. C. Kuo, W. H. Chang, L. J. Li, and Y. Shi, Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment, ACS Nano 10(1), 1454 (2016)
CrossRef ADS Google scholar
[131]
I. S. Kim, V. K. Sangwan, D. Jariwala, J. D. Wood, S. Park, K.S. Chen, F. Shi, F. Ruiz-Zepeda, A. Ponce, M. Jose-Yacaman, V. P. Dravid, T. J. Marks, M. C. Hersam, and L. J. Lauhon, Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2, ACS Nano 8(10), 10551 (2014)
CrossRef ADS Google scholar
[132]
X. Liu, D. Qu, J. Ryu, F. Ahmed, Z. Yang, D. Lee, and W. J. Yoo, P-type polar transition of chemically doped multilayer MoS2 transistor, Adv. Mater. 28(12), 2345 (2016)
CrossRef ADS Google scholar
[133]
A. Nipane, D. Karmakar, N. Kaushik, S. Karande, and S. Lodha, Few-layer MoS2p-type devices enabled by selective doping using low energy phosphorus implantation, ACS Nano 10(2), 2128 (2016)
CrossRef ADS Google scholar
[134]
C.-H. Chen, C.-L. Wu, J. Pu, M.-H. Chiu, P. Kumar, T. Takenobu, and L.-J. Li, Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration, 2D Materials 1, 034001 (2014)
[135]
H. Matsuoka, K. Kanahashi, N. Tanaka, Y. Shoji, L. J. Li, J. Pu, H. Ito, H. Ohta, T. Fukushima, and T. Takenobu, Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant, Jpn. J. Appl. Phys. 57(2S2), 02CB15 (2018)
[136]
T. Komesu, D. Le, I. Tanabe, E. F. Schwier, Y. Kojima, M. Zheng, K. Taguchi, K. Miyamoto, T. Okuda, H. Iwasawa, K. Shimada, T. S. Rahman, and P. A. Dowben, Adsorbate doping of MoS2 and WSe2: The influence of Na and Co, J. Phys.: Condens. Matter 29(28), 285501 (2017)
CrossRef ADS Google scholar
[137]
H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, and A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium, Nano Lett. 13(5), 1991 (2013)
CrossRef ADS Google scholar
[138]
K. Chen, D. Kiriya, M. Hettick, M. Tosun, T.J. Ha, S. R. Madhvapathy, S. Desai, A. Sachid, and A. Javey, Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density, APL Mater. 2, 092504 (2014)
CrossRef ADS Google scholar
[139]
W. Wang, X. Niu, H. Qian, L. Guan, M. Zhao, X. Ding, S. Zhang, Y. Wang, and J. Sha, Surface charge transfer doping of monolayer molybdenum disulfide by black phosphorus quantum dots, Nanotechnology 27(50), 505204 (2016)
CrossRef ADS Google scholar
[140]
S. S. Chee, C. Oh, M. Son, G. C. Son, H. Jang, T. J. Yoo, S. Lee, W. Lee, J. Y. Hwang, H. Choi, B. H. Lee, and M. H. Ham, Sulfur vacancy-induced reversible doping of transition metal disulfides via hydrazine treatment, Nanoscale 9(27), 9333 (2017)
CrossRef ADS Google scholar
[141]
P. Nagler, M. V. Ballottin, A. A. Mitioglu, F. Mooshammer, N. Paradiso, C. Strunk, R. Huber, A. Chernikov, P. Christianen, C. Schüller, and T. Korn, Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures, Nat. Commun. 8(1), 1551 (2017)
CrossRef ADS Google scholar
[142]
P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Valley-polarized exciton dynamics in a 2D semiconductor heterostructure, Science 351(6274), 688 (2016)
CrossRef ADS Google scholar
[143]
J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Band offsets and heterostructures of two-dimensional semiconductors, Appl. Phys. Lett. 102(1), 012111 (2013)
CrossRef ADS Google scholar
[144]
M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, J. H. He, W.H. Chang, K. Suenaga, and L.J. Li, Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface, Science 349(6247), 524 (2015)
CrossRef ADS Google scholar
[145]
R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan, Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–ndiodes, Nano Lett. 14(10), 5590 (2014)
CrossRef ADS Google scholar
[146]
M. M. Furchi, A. A. Zechmeister, F. Hoeller, S. Wachter, A. Pospischil, and T. Mueller, Photovoltaics in van der Waals heterostructures, IEEE J. Sel. Top. Quantum Electron. 23(1), 106 (2017)
CrossRef ADS Google scholar
[147]
B. Peng, G. Yu, X. Liu, B. Liu, X. Liang, L. Bi, L. Deng, T. C. Sum, and K. P. Loh, Ultrafast charge transfer in MoS2/WSe2 p–n Heterojunction, 2D Materials 3, 025020 (2016)
[148]
J. Kim, C. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures, Sci. Adv. 3(7), e1700518 (2017)
CrossRef ADS Google scholar
[149]
J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, Directional interlayer spin-valley transfer in two-dimensional heterostructures, Nat. Commun. 7, 13747 (2016)
CrossRef ADS Google scholar
[150]
H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, et al., Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014)
CrossRef ADS Google scholar
[151]
P. Rivera, J. Schaibley, A. Jones, J. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures, Nat. Commun. 6(1), 6242 (2015)
CrossRef ADS Google scholar
[152]
P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.U. Lee, K. Y. Ma, A.R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures, ACS Nano 11, 4041 (2017)
CrossRef ADS Google scholar
[153]
J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, Interlayer exciton optoelectronics in a 2D heterostructure p–n junction, Nano Lett. 17(2), 638 (2017)
CrossRef ADS Google scholar
[154]
S. Huang, L. Liang, X. Ling, A. A. Puretzky, D. B. Geohegan, B. G. Sumpter, J. Kong, V. Meunier, and M. S. Dresselhaus, Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2, Nano Lett. 16(2), 1435 (2016)
CrossRef ADS Google scholar
[155]
K. Liu, L. Zhang, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S. G. Louie, and F. Wang, Evolution of interlayer coupling in twisted molybdenum disulfide bilayers, Nat. Commun. 5, 4966 (2014)
CrossRef ADS Google scholar
[156]
S. Huang, X. Ling, L. Liang, J. Kong, H. Terrones, V. Meunier, and M. S. Dresselhaus, Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy, Nano Lett. 14(10), 5500 (2014)
CrossRef ADS Google scholar
[157]
J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, Valley polarization in stacked MoS2 induced by circularly polarized light, Nano Res. 10(5), 1618 (2017)
CrossRef ADS Google scholar
[158]
R. Suzuki, M. Sakano, Y. J. Zhang, R. Akashi, D. Morikawa, A. Harasawa, K. Yaji, K. Kuroda, K. Miyamoto, T. Okuda, K. Ishizaka, R. Arita, and Y. Iwasa, Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry, Nat. Nanotechnol. 9(8), 611 (2014)
CrossRef ADS Google scholar
[159]
T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y. R. Shen, W. T. Liu, and S. Wu, Valley and band structure engineering of folded MoS2 bilayers, Nat. Nanotechnol. 9(10), 825 (2014)
CrossRef ADS Google scholar
[160]
B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, Long-lived direct and indirect interlayer excitons in van der Waals heterostructures, Nano Lett. 17(9), 5229 (2017)
CrossRef ADS Google scholar
[161]
H. Yu, Y. Wang, Q. Tong, X. Xu, and W. Yao, Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers, Phys. Rev. Lett. 115(18), 187002 (2015)
CrossRef ADS Google scholar
[162]
M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Band-structure topologies of graphene: Spin-orbit coupling effects from first principles, Phys. Rev. B 80(23), 235431 (2009)
CrossRef ADS Google scholar
[163]
Y. K. Luo, J. Xu, T. Zhu, G. Wu, E. J. McCormick, W. Zhan, M. R. Neupane, and R. K. Kawakami, Optovalleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves, Nano Lett. 17(6), 3877 (2017)
CrossRef ADS Google scholar
[164]
A. Avsar, D. Unuchek, J. Liu, O. L. Sanchez, K. Watanabe, T. Taniguchi, B. Ozyilmaz, and A. Kis, Optospintronics in graphene via proximity coupling, ACS Nano 11(11), 11678 (2017)
CrossRef ADS Google scholar
[165]
A. Avsar, J. Y. Tan, T. Taychatanapat, J. Balakrishnan, G. Koon, Y. Yeo, J. Lahiri, A. Carvalho, A. Rodin, E. C. T. O’Farrell, G. Eda, A. H. Castro Neto, and B. Özyilmaz, Spin–orbit proximity effect in graphene, Nat. Commun. 5, 4875 (2014)
CrossRef ADS Google scholar
[166]
M. Gmitra, D. Kochan, P. Högl, and J. Fabian, Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides, Phys. Rev. B 93(15), 155104 (2016)
CrossRef ADS Google scholar
[167]
S. Omar and B. J. van Wees, Graphene-WS2 heterostructures for tunable spin injection and spin transport, Phys. Rev. B 95(8), 081404 (2017)
CrossRef ADS Google scholar
[168]
T. S. Ghiasi, J. Ingla-Aynés, A. A. Kaverzin, and B. J. van Wees, Large proximity-induced spin lifetime anisotropy in transition-metal dichalcogenide/graphene heterostructures, Nano Lett. 17(12), 7528 (2017) (2017)
[169]
A. W. Cummings, J. H. Garcia, J. Fabian, and S. Roche, Giant spin lifetime anisotropy in graphene induced by proximity effects, Phys. Rev. Lett. 119(20), 206601 (2017)
CrossRef ADS Google scholar
[170]
L. A. Benítez, J. F. Sierra, W. S. Torres, A. Arrighi, F. Bonell, M. V. Costache, and S. O. Valenzuela, Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature, Nat. Phys. 14, 303 (2017)
[171]
S. Omar and B. J. van Wees, Spin transport in highmobility graphene on WS2 substrate with electric-field tunable proximity spin-orbit interaction, Phys. Rev. B 97(4), 045414 (2018)
CrossRef ADS Google scholar
[172]
W. Yan, O. Txoperena, R. Llopis, H. Dery, L. E. Hueso, and F. Casanova, A two-dimensional spin field-effect switch, Nat. Commun. 7, 13372 (2016)
CrossRef ADS Google scholar
[173]
A. Dankert and S. P. Dash, Electrical gate control of spin current in van der Waals heterostructures at room temperature, Nat. Commun. 8, 16093 (2017)
CrossRef ADS Google scholar
[174]
D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. Robinson, E. Chekhovich, I. Tartakovskii, O. Kolosov, and A. Tartakovskii, Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates, Sci. Rep. 3, 3489 (2013)
CrossRef ADS Google scholar
[175]
D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, Science 345(6194), 298 (2014)
CrossRef ADS Google scholar
[176]
M. K. L. Man, S. Deckoff-Jones, A. Winchester, G. Shi, G. Gupta, A. D. Mohite, S. Kar, E. Kioupakis, S. Talapatra, and K. M. Dani, Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer, Sci. Rep. 6, 20890 (2016)
CrossRef ADS Google scholar
[177]
C. M. Chow, H. Yu, A. M. Jones, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, Unusual exciton–phonon interactions at van der Waals engineered interfaces, Nano Lett. 17(2), 1194 (2017)
CrossRef ADS Google scholar
[178]
W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater. 12(3), 246 (2013)
CrossRef ADS Google scholar
[179]
J. Wierzbowski, J. Klein, F. Sigger, C. Straubinger, M. Kremser, T. Taniguchi, K. Watanabe, U. Wurstbauer, A. W. Holleitner, M. Kaniber, K. Mller, and J. J. Finley, Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit, Sci. Rep. 7(1), 12383 (2017)
CrossRef ADS Google scholar
[180]
S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, et al., Optical signature of symmetry variations and spinvalley coupling in atomically thin tungsten dichalcogenides, Sci. Rep. 3, 1608 (2013)
CrossRef ADS Google scholar
[181]
J. Kunstmann, T. B. Wendumu, and G. Seifert, Localized defect states in MoS2 monolayers: Electronic and optical properties, physica status solidi (b) 254, 1600645 (2016)
[182]
S. Y. Chen, T. Goldstein, J. Tong, T. Taniguchi, K. Watanabe, and J. Yan, Superior valley polarization and coherence of 2s excitons in monolayer WSe2, Phys. Rev. Lett. 120(4), 046402 (2018)
CrossRef ADS Google scholar
[183]
K. Wang, K. D. Greve, L. A. Jauregui, A. Sushko, A. High, Y. Zhou, G. Scuri, T. Taniguchi, K. Watanabe, M. D. Lukin, H. Park, and P. Kim, Electrical control of charged carriers and excitons in atomically thin materials, Nat. Nanotechnol. 13(2), 128 (2018)
CrossRef ADS Google scholar
[184]
H. J. Conley, B. Wang, J. I. Ziegler, S. T. Jr Haglund, Pantelides, and K. I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13(8), 3626 (2013)
CrossRef ADS Google scholar
[185]
S. B. Desai, G. Seol, J. S. Kang, H. Fang, C. Battaglia, R. Kapadia, J. W. Ager, J. Guo, and A. Javey, Straininduced indirect to direct bandgap transition in multilayer WSe2, Nano Lett. 14(8), 4592 (2014)
CrossRef ADS Google scholar
[186]
H. Rostami, R. Roldán, E. Cappelluti, R. Asgari, and F. Guinea, Theory of strain in single-layer transition metal dichalcogenides, Phys. Rev. B 92(19), 195402 (2015)
CrossRef ADS Google scholar
[187]
A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor, Nat. Commun. 8, 15053 (2017)
CrossRef ADS Google scholar
[188]
M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J. Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, Single photon emitters in exfoliated WSe2 structures, Nat. Nanotechnol. 10(6), 503 (2015)
CrossRef ADS Google scholar
[189]
C. Palacios-Berraquero, D. M. Kara, A. R. P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, Large-scale quantum-emitter arrays in atomically thin semiconductors, Nat. Commun. 8, 15093 (2017)
CrossRef ADS Google scholar
[190]
G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, Nanobubble induced formation of quantum emitters in monolayer semiconductors, 2D Materials 4, 021019 (2017)
[191]
S. Schwarz, A. Kozikov, F. Withers, J. Maguire, A. Foster, S. Dufferwiel, L. Hague, M. Makhonin, L. Wilson, A. Geim, et al., Electrically pumped single-defect light emitters in WSe2, 2D Materials 3, 025038 (2016)
[192]
G. Clark, J. R. Schaibley, J. Ross, T. Taniguchi, K. Watanabe, J. R. Hendrickson, S. Mou, W. Yao, and X. Xu, Single defect light-emitting diode in a van der Waals heterostructure, Nano Lett. 16(6), 3944 (2016)
CrossRef ADS Google scholar
[193]
E. M. Mannebach, C. Nyby, F. Ernst, Y. Zhou, J. Tolsma, Y. Li, M. J. Sher, I. C. Tung, H. Zhou, Q. Zhang, et al., Dynamic optical tuning of interlayer interactions in the transition metal dichalcogenides, Nano Lett. 17(12), 7761 (2017)
CrossRef ADS Google scholar
[194]
S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett. 77(18), 3873 (1996)
CrossRef ADS Google scholar
[195]
A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, Strongly interacting photons in a nonlinear cavity, Phys. Rev. Lett. 79(8), 1467 (1997)
[196]
J. K. Furdyna and J. Kossut (Eds.), Diluted Magnetic Semiconductors, Semiconductors and Semimetals, Vol. 25 New York: Academic Press, 1988
[197]
D. R. Yakovlev and W. Ossau, in: Introduction to the Physics of Diluted Magnetic Semiconductors, Springer Series in Materials Science, Vol. 144, edited by J. A. Gaj and J. Kossut, Berlin Heidelberg: Springer, 2010, pp 221–262
CrossRef ADS Google scholar
[198]
R. C. Myers, M. Poggio, N. P. Stern, A. C. Gossard, and D. D. Awschalom, Antiferromagnetic s-d exchange coupling in GaMnAs, Phys. Rev. Lett. 95(1), 017204 (2005)
CrossRef ADS Google scholar
[199]
N. P. Stern, R. C. Myers, M. Poggio, A. C. Gossard, and D. D. Awschalom, Confinement engineering of sd exchange interactions in Ga1−xMnxAs/AlyGa1−yAs quantum wells, Phys. Rev. B 75(4), 045329 (2007)
CrossRef ADS Google scholar
[200]
R. Beaulac, L. Schneider, P. I. Archer, G. Bacher, and D. R. Gamelin, Light-induced spontaneous magnetization in doped colloidal quantum dots, Science 325(5943), 973 (2009)
CrossRef ADS Google scholar
[201]
T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54(2), 437 (1982)
CrossRef ADS Google scholar
[202]
U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE 90(6), 1022 (2002)
CrossRef ADS Google scholar
[203]
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Twodimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)
CrossRef ADS Google scholar
[204]
Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, Bright, multicoloured light-emitting diodes based on quantum dots, Nat. Photon. 1(12), 717 (2007)
CrossRef ADS Google scholar
[205]
I. J. Kramer and E. H. Sargent, The architecture of colloidal quantum dot solar cells: Materials to devices, Chem. Rev. 114(1), 863 (2014)
CrossRef ADS Google scholar
[206]
H. M. Azzazy, M. M. Mansour, and S. C. Kazmierczak, From diagnostics to therapy: Prospects of quantum dots, Clin. Biochem. 40(13–14), 917 (2007)
CrossRef ADS Google scholar
[207]
J. Klinovaja and D. Loss, Spintronics in MoS2 monolayer quantum wires, Phys. Rev. B 88(7), 075404 (2013)
CrossRef ADS Google scholar
[208]
V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science 336(6084), 1003 (2012)
CrossRef ADS Google scholar
[209]
S. Pavlović and F. M. Peeters, Electronic properties of triangular and hexagonal MoS2 quantum dots, Phys. Rev. B 91, 155410 (2015)
CrossRef ADS Google scholar
[210]
L. Pei, S. Tao, S. Haibo, and X. Song, Structural stability, electronic and magnetic properties of MoS2 quantum dots based on the first principles, Solid State Commun. 218, 25 (2015)
CrossRef ADS Google scholar
[211]
A. J. Pearce and G. Burkard, Electron spin relaxation in a transition-metal dichalcogenide quantum dot, 2D Materials 4, 025114 (2017)
[212]
M. Brooks and G. Burkard, Spin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayers, Phys. Rev. B 95(24), 245411 (2017)
CrossRef ADS Google scholar
[213]
S. Ono and T. Ogura, Theory of laterally confined two dimensional excitons, arXiv: 1801.06923 (2018)
[214]
G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, and T. Frauenheim, Structure and electronic properties of MoS2 nanotubes, Phys. Rev. Lett. 85(1), 146 (2000)
CrossRef ADS Google scholar
[215]
M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes, Science 292(5516), 479 (2001)
CrossRef ADS Google scholar
[216]
Z. Gan, L. Liu, H. Wu, Y. Hao, Y. Shan, X. Wu, and P. K. Chu, Quantum confinement effects across twodimensional planes in MoS2 quantum dots, Appl. Phys. Lett. 106(23), 233113 (2015)
CrossRef ADS Google scholar
[217]
D. Gopalakrishnan, D. Damien, B. Li, H. Gullappalli, V. K. Pillai, P. M. Ajayan, and M. M. Shaijumon, Electrochemical synthesis of luminescent MoS2 quantum dots, Chem. Commun. 51(29), 6293 (2015)
CrossRef ADS Google scholar
[218]
H. Jin, M. Ahn, S. Jeong, J. H. Han, D. Yoo, D. H. Son, and J. Cheon, Colloidal single-layer quantum dots with lateral confinement effects on 2D exciton, J. Am. Chem. Soc. 138(40), 13253 (2016)
CrossRef ADS Google scholar
[219]
H. Jin, B. Baek, D. Kim, F. Wu, J. D. Batteas, J. Cheon, and D. H. Son, Effects of direct solvent-quantum dot interaction on the optical properties of colloidal monolayer WS2 quantum dots, Nano Lett. 17(12), 7471 (2017)
CrossRef ADS Google scholar
[220]
H. Xu, Z. Ding, C. T. Nai, Y. Bao, F. Cheng, S. J. R. Tan, and K. P. Loh, Controllable synthesis of 2D and 1D MoS2 nanostructures on Au surface, Adv. Funct. Mater. 27, 1603887 (2017)
CrossRef ADS Google scholar
[221]
G. Wei, D. A. Czaplewski, E. J. Lenferink, T. K. Stanev, I. W. Jung, and N. P. Stern, Size-tunable lateral confinement in monolayer semiconductors, Sci. Rep. 7(1), 3324 (2017)
CrossRef ADS Google scholar
[222]
G. Wei, E. J. Lenferink, D. A. Czaplewski, and N. P. Stern, Width-dependent photoluminescence and anisotropic Raman spectroscopy from monolayer MoS2 nanoribbons, arXiv: 1709.04001 (2017)
[223]
G. B. Liu, H. Pang, Y. Yao, and W. Yao, Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides, New J. Phys. 16(10), 105011 (2014)
CrossRef ADS Google scholar
[224]
G. Wei, T. K. Stanev, D. A. Czewski, I. W. Jung, and N. P. Stern, Silicon-nitride photonic circuits interfaced with monolayer MoS2, Appl. Phys. Lett. 107(9), 091112 (2015)
CrossRef ADS Google scholar
[225]
J. Kim, X. Hong, C. Jin, S. F. Shi, C. Y. S. Chang, M. H. Chiu, L. J. Li, and F. Wang, Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers, Science 346(6214), 1205 (2014)
CrossRef ADS Google scholar
[226]
W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice, Nano Lett. 16(2), 1262 (2016)
CrossRef ADS Google scholar
[227]
N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. Yeow, and T. Yu, Nonblinking, intense two-dimensional light emitter: Monolayer WS2 triangles, ACS Nano 7(12), 10985 (2013)
CrossRef ADS Google scholar
[228]
H. Wang, C. Zhang, and F. Rana, Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2, Nano Lett. 15(1), 339 (2015)
CrossRef ADS Google scholar
[229]
S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, Prospects for LED lighting, Nat. Photon. 3(4), 180 (2009)
CrossRef ADS Google scholar
[230]
T. Fujii, Y. Gao, R. Sharma, E. Hu, S. DenBaars, and S. Nakamura, Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening, Appl. Phys. Lett. 84(6), 855 (2004)
CrossRef ADS Google scholar
[231]
X. Gan, Y. Gao, K. F. Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, et al., Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity, Appl. Phys. Lett. 103(18), 181119 (2013)
CrossRef ADS Google scholar
[232]
S. Wu, S. Buckley, A. M. Jones, J. S. Ross, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, F. Hatami, J. Vučković, A. Majumdar, and X. D. Xu, Control of two-dimensional excitonic light emission via photonic crystal, 2D Materials 1, 011001 (2014)
[233]
S. Schwarz, S. Dufferwiel, P. Walker, F. Withers, A. Trichet, M. Sich, F. Li, E. Chekhovich, D. Borisenko, N. N. Kolesnikov, K. S. Novoselov, et al., Two-dimensional metal–chalcogenide films in tunable optical microcavities, Nano Lett. 14(12), 7003 (2014)
CrossRef ADS Google scholar
[234]
Y. J. Noori, Y. Cao, J. Roberts, C. Woodhead, R. Bernardo-Gavito, P. Tovee, and R. J. Young, Photonic crystals for enhanced light extraction from 2D materials, ACS Photon. 3(12), 2515 (2016)
CrossRef ADS Google scholar
[235]
J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E.Cubukcu, Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter, Nano Lett. 15(3), 1967 (2015)
CrossRef ADS Google scholar
[236]
T. Ren, P. Song, J. Chen, and K. P. Loh, Whisper gallery modes in monolayer tungsten disulfidehexagonal boron nitride optical cavity, ACS Photon. 5(2), 353 (2018)
CrossRef ADS Google scholar
[237]
S. Hammer, H. M. Mangold, A. E. Nguyen, D. Martinez-Ta, S. Naghibi Alvillar, L. Bartels, and H. J. Krenner, Scalable and transfer-free fabrication of MoS2/SiO2 hybrid nanophotonic cavity arrays with quality factors exceeding 4000, Sci. Rep. 7(1), 7251 (2017)
CrossRef ADS Google scholar
[238]
S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, Monolayer semiconductor nanocavity lasers with ultralow thresholds, Nature 520(7545), 69 (2015)
CrossRef ADS Google scholar
[239]
A. Alduino and M. Paniccia, Wiring electronics with light,Nat. Photon. 1(3), 153 (2007)
CrossRef ADS Google scholar
[240]
H. J. Caulfield and S. Dolev, Why future supercomputing requires optics, Nat. Photon. 4(5), 261 (2010)
CrossRef ADS Google scholar
[241]
E. Murphy, Enabling optical communication, Nat. Photon. 4(5), 287 (2010)
CrossRef ADS Google scholar
[242]
O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, Optically pumped two-dimensional MoS2 lasers operating at room-temperature, Nano Lett. 15(8), 5302 (2015)
CrossRef ADS Google scholar
[243]
H. Fang, J. Liu, H. Li, L. Zhou, L. Liu, J. Li, X. Wang, T. F. Krauss, and Y. Wang, 1305 nm MoTe2-on-silicon Laser, arXiv: 1710.01591 (2017)
[244]
Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Ning, Room-temperature continuouswave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity, Nat. Nanotechnol. 12(10), 987 (2017)
CrossRef ADS Google scholar
[245]
S. Strauf and F. Jahnke, Single quantum dot nanolaser, Laser & Photon. Rev. 5, 607 (2011)
CrossRef ADS Google scholar
[246]
C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69(23), 3314 (1992)
CrossRef ADS Google scholar
[247]
R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, Measurement of cavitypolariton dispersion curve from angle-resolved photoluminescence experiments, Phys. Rev. Lett. 73(15), 2043 (1994)
CrossRef ADS Google scholar
[248]
H. Deng, H. Haug, and Y. Yamamoto, Exciton-polariton Bose–Einstein condensation, Rev. Mod. Phys. 82(2), 1489 (2010)
CrossRef ADS Google scholar
[249]
H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons, Science 298(5591), 199 (2002)
CrossRef ADS Google scholar
[250]
J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. Keeling, F. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Bose–Einstein condensation of exciton polaritons, Nature 443(7110), 409 (2006)
CrossRef ADS Google scholar
[251]
R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Bose-Einstein condensation of microcavity polaritons in a trap, Science 316(5827), 1007 (2007)
CrossRef ADS Google scholar
[252]
S. Christopoulos, G. B. H. Von Högersthal, A. Grundy, P. Lagoudakis, A. Kavokin, J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, Room-temperature polariton lasing in semiconductor microcavities, Phys. Rev. Lett. 98(12), 126405 (2007)
CrossRef ADS Google scholar
[253]
J. Baumberg, A. Kavokin, S. Christopoulos, A. Grundy, R. Butté, G. Christmann, D. Solnyshkov, G. Malpuech, G. B. H. von Högersthal, E. Feltin, et al., Spontaneous polarization buildup in a room-temperature polariton laser, Phys. Rev. Lett. 101(13), 136409 (2008)
CrossRef ADS Google scholar
[254]
S. Kéna-Cohen and S. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity, Nat. Photonics 4(6), 371 (2010)
CrossRef ADS Google scholar
[255]
T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, et al., Polariton lasing in a hybrid bulk ZnO microcavity, Appl. Phys. Lett. 99(16), 161104 (2011)
CrossRef ADS Google scholar
[256]
J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt, Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer, Nat. Mater. 13(3), 247 (2014)
CrossRef ADS Google scholar
[257]
T. C. Lu, Y. Y. Lai, Y. P. Lan, S. W. Huang, J. R. Chen, Y. C. Wu, W. F. Hsieh, and H. Deng, Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity, Opt. Express 20(5), 5530 (2012)
CrossRef ADS Google scholar
[258]
P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, Room temperature electrically injected polariton laser, Phys. Rev. Lett. 112(23), 236802 (2014)
CrossRef ADS Google scholar
[259]
T. Liew, A. Kavokin, and I. Shelykh, Optical circuits based on polariton neurons in semiconductor microcavities, Phys. Rev. Lett. 101(1), 016402 (2008)
CrossRef ADS Google scholar
[260]
A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, Exciton– polariton spin switches, Nat. Photon. 4(6), 361 (2010)
CrossRef ADS Google scholar
[261]
D. Sanvitto and S. Kéna-Cohen, The road towards polaritonic devices, Nat. Mater. 15(10), 1061 (2016)
CrossRef ADS Google scholar
[262]
S. Dufferwiel, S. Schwarz, F. Withers, A. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. Solnyshkov, et al., Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities, Nat. Commun. 6, 8579 (2015)
CrossRef ADS Google scholar
[263]
M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, Fermi polaronpolaritons in charge-tunable atomically thin semiconductors, Nat. Phys. 13(3), 255 (2016)
[264]
S. Dufferwiel, T. Lyons, D. Solnyshkov, A. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. Smith, K. Novoselov, M. Skolnick, et al., Valley-addressable polaritons in atomically thin semiconductors, Nat. Photon. 11, 497 (2017)
CrossRef ADS Google scholar
[265]
L. C. Flatten, Z. He, D. M. Coles, A. A. P. Trichet, A. W. Powell, R. A. Taylor, J. H. Warner, and J. M. Smith, Room-temperature exciton-polaritons with twodimensional WS2, Sci. Rep. 6(1), 33134 (2016)
CrossRef ADS Google scholar
[266]
L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2, Nat. Commun. 8, 14097 (2017)
CrossRef ADS Google scholar
[267]
Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, Optical control of room-temperature valley polaritons, Nat. Photon. 11(8), 491 (2017)
CrossRef ADS Google scholar
[268]
X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, Control of coherently coupled exciton polaritons in monolayer Tungsten disulphide, Phys. Rev. Lett. 119(2), 027403 (2017)
CrossRef ADS Google scholar
[269]
N. Lundt, S. Stoll, P. Nagler, A. Nalitov, S. Klembt, S. Betzold, J. Goddard, E. Frieling, A. Kavokin, C. Schüller, T. Korn, S. Höfling, and C. Schneider, Observation of macroscopic valley-polarized monolayer exciton-polaritons at room temperature, Phys. Rev. B 96(24), 241403 (2017)
CrossRef ADS Google scholar
[270]
L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun. 9, 713 (2018)
CrossRef ADS Google scholar
[271]
M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Tamm plasmon polaritons: Slow and spatially compact light, Appl. Phys. Lett. 92(25), 251112 (2008)
CrossRef ADS Google scholar
[272]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons, Appl. Phys. Lett. 110(5), 051101 (2017)
CrossRef ADS Google scholar
[273]
S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature, Nano Lett. 16(7), 4368 (2016)
CrossRef ADS Google scholar
[274]
Z. Wang, R. Gogna, and H. Deng, What is the best planar cavity for maximizing coherent exciton-photon coupling, Appl. Phys. Lett. 111(6), 061102 (2017)
CrossRef ADS Google scholar
[275]
B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höing, and H. Deng, Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity, Light Sci. Appl. 3(1), e135 (2014)
CrossRef ADS Google scholar
[276]
S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höing, and H. Deng, Coherent polariton laser, Phys. Rev. X 6(1), 011026 (2016)
CrossRef ADS Google scholar
[277]
G. Sallen, L. Bouet, X. Marie, G. Wang, C. Zhu, W. Han, Y. Lu, P. Tan, T. Amand, B. Liu, and B. Urbaszek, Robust optical emission polarization in MoS2 monolayers through selective valley excitation, Phys. Rev. B 86(8), 081301 (2012)
CrossRef ADS Google scholar
[278]
S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. Xu, Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization, ACS Nano 7(3), 2768 (2013)
CrossRef ADS Google scholar
[279]
M. Z. Maialle, E. A. de Andrada e Silva, and L. J. Sham, Exciton spin dynamics in quantum wells, Phys. Rev. B 47(23), 15776 (1993)
CrossRef ADS Google scholar
[280]
E. Palacios, S. Park, S. Butun, L. Lauhon, and K. Aydin, Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantenna, Appl. Phys. Lett. 111(3), 031101 (2017)
CrossRef ADS Google scholar
[281]
Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, et al., Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons, Nat. Nanotechnol. 12(9), 856 (2017)
CrossRef ADS Google scholar
[282]
J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals, Nano Lett. 17(8), 4689 (2017)
CrossRef ADS Google scholar
[283]
E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions, Science 311(5758), 189 (2006)
CrossRef ADS Google scholar
[284]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater. 9(3), 193 (2010)
CrossRef ADS Google scholar
[285]
A. F. Koenderink, A. Alù, and A. Polman, Nanophotonics: Shrinking light-based technology, Science 348(6234), 516 (2015)
CrossRef ADS Google scholar
[286]
K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Ultrafast active plasmonics, Nat. Photon. 3(1), 55 (2009)
CrossRef ADS Google scholar
[287]
S. Palomba, M. Danckwerts, and L. Novotny, Nonlinear plasmonics with gold nanoparticle antennas, J. Opt. A 11(11), 114030 (2009)
CrossRef ADS Google scholar
[288]
M. Kauranen and A. V. Zayats, Nonlinear plasmonics, Nat. Photon. 6(11), 737 (2012)
CrossRef ADS Google scholar
[289]
C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, Negative refraction, gain and nonlinear effects in hyperbolic metamaterials, Opt. Express 21(12), 15037 (2013)
CrossRef ADS Google scholar
[290]
P. Bharadwaj, B. Deutsch, and L. Novotny, Optical Antennas, Adv. Opt. Photon. 1(3), 438 (2009)
CrossRef ADS Google scholar
[291]
L. Novotny and N. Van Hulst, Antennas for light, Nat. Photon. 5(2), 83 (2011)
CrossRef ADS Google scholar
[292]
A. F. Koenderink, Single-photon nanoantennas, ACS Photon. 4(4), 710 (2017)
CrossRef ADS Google scholar
[293]
A. Campion and P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev. 27(4), 241 (1998)
CrossRef ADS Google scholar
[294]
A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, Surface-enhanced Raman scattering, J. Phys.: Condens. Matter 4(5), 1143 (1992)
CrossRef ADS Google scholar
[295]
P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Surface-enhanced Raman spectroscopy, Annu. Rev. Anal. Chem. 1(1), 601 (2008)
CrossRef ADS Google scholar
[296]
E. Palacios, S. Park, L. Lauhon, and K. Aydin, Identifying excitation and emission rate contributions to plasmon-enhanced photoluminescence from monolayer MoS2 using a tapered gold nanoantenna, ACS Photon. 4(7), 1602 (2017)
CrossRef ADS Google scholar
[297]
M. Wang, W. Li, L. Scarabelli, B. B. Rajeeva, M. Terrones, L. M. Liz-Marzán, D. Akinwande, and Y. Zheng, Plasmon–trion and plasmon–exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2, Nanoscale 9(37), 13947 (2017)
CrossRef ADS Google scholar
[298]
I. Abid, A. Bohloul, S. Najmaei, C. Avendano, H. L. Liu, R. Péchou, A. Mlayah, and J. Lou, Resonant surface plasmon–exciton interaction in hybrid MoSe2 @Au nanostructures, Nanoscale 8(15), 8151 (2016)
CrossRef ADS Google scholar
[299]
M. G. Lee, S. Yoo, T. Kim, and Q. H. Park, Large-area plasmon enhanced two-dimensional MoS2, Nanoscale 9(42), 16244 (2017)
CrossRef ADS Google scholar
[300]
J. Huang, G. M. Akselrod, T. Ming, J. Kong, and M. H. Mikkelsen, Tailored emission spectrum of 2D semiconductors using plasmonic nanocavities, ACS Photon. 5(2), 552 (2017)
CrossRef ADS Google scholar
[301]
I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures, ACS Photon. 4(7), 1653 (2017)
CrossRef ADS Google scholar
[302]
A. Boulesbaa, V. E. Babicheva, K. Wang, I. I. Kravchenko, M. W. Lin, M. Mahjouri-Samani, C. B. Jacobs, A. A. Puretzky, K. Xiao, I. Ivanov, et al., Ultrafast dynamics of metal plasmons induced by 2D semiconductor excitons in hybrid nanostructure arrays, ACS Photon. 3(12), 2389 (2016)
[303]
A. D. Johnson, F. Cheng, Y. Tsai, and C. K. Shih, Giant enhancement of defect-bound exciton luminescence and suppression of band-edge luminescence in monolayer WSe2–Ag plasmonic hybrid structures,Nano Lett. 17(7), 4317 (2017)
CrossRef ADS Google scholar
[304]
Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, and Z. Fang, Tailoring MoS2 exciton-plasmon interaction by optical spin-orbit coupling, ACS Nano 11(2), 1165 (2016)
CrossRef ADS Google scholar
[305]
H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y.G. Roh, et al., Optical gain in MoS2 via coupling with nanostructured substrate: Fabry–Perot interference and plasmonic excitation, ACS Nano 10, 8192 (2016)
CrossRef ADS Google scholar
[306]
B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. C. Johnson, and R. Agarwal, Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice, Nano Lett. 17(7), 4541 (2017)
CrossRef ADS Google scholar
[307]
M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity, ACS Photon. 5(1), 240 (2018)
CrossRef ADS Google scholar
[308]
M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. Pury, C. Groβe, B. Nijs, J. Mertens, et al, Strong-coupling of WSe2 in ultracompact plasmonic nanocavities at room temperature, Nat. Commun. 8(1), 1296 (2017)
CrossRef ADS Google scholar
[309]
D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2, Nano Lett. 17(6), 3809 (2017)
CrossRef ADS Google scholar
[310]
J. Cuadra, D. G. Baranov, M. Wersll, R. Verre, T. J. Antosiewicz, and T. Shegai, Observation of tunable charged exciton polaritons in hybrid monolayer WS2- plasmonic nanoantenna system, Nano Lett. 18(3), 1777 (2018)
CrossRef ADS Google scholar
[311]
P. Gonçalves, L. Bertelsen, S. Xiao, and N. A. Mortensen, Plasmon-exciton polaritons in twodimensional semiconductor/metal interfaces, Phys. Rev. B 97(4), 041402 (2018)
CrossRef ADS Google scholar
[312]
J. H. Shirley, Solution of the Schrödinger equation with a hamiltonian periodic in time, Phys. Rev. 138, B979 (1965)
CrossRef ADS Google scholar
[313]
E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, Valley-selective optical Stark effect in monolayer WS2, Nat. Mater. 14(3), 290 (2015)
CrossRef ADS Google scholar
[314]
E. J. Sie, C. H. Lui, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, Large, valley-exclusive Bloch–Siegert shift in monolayer WS2, Science 355(6329), 1066 (2017)
CrossRef ADS Google scholar
[315]
T. LaMountain, H. Bergeron, I. Balla, T. K. Stanev, M. C. Hersam, and N. P. Stern, Valley-selective optical Stark effect probed by Kerr rotation, Phys. Rev. B 97(4), 045307 (2018)
CrossRef ADS Google scholar
[316]
S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M. H. Jo, and H. Choi, Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2, Nat. Commun. 7, 13569 (2016)
CrossRef ADS Google scholar
[317]
A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. Masselink, and H. Morkoc, “Dressed excitons” in a multiple-quantum-well structure: Evidence for an optical stark effect with femtosecond response time, Phys. Rev. Lett. 56(25), 2748 (1986)
CrossRef ADS Google scholar
[318]
A. Von Lehmen, D. S. Chemla, J. Heritage, and J. Zucker, Optical Stark effect on excitons in GaAs quantum wells, Opt. Lett. 11(10), 609 (1986)
CrossRef ADS Google scholar
[319]
W. Knox, D. Chemla, D. Miller, J. Stark, and S. Schmitt-Rink, Femtosecond ac Stark effect in semiconductor quantum wells: Extreme low- and high-intensity limits, Phys. Rev. Lett. 62(10), 1189 (1989)
CrossRef ADS Google scholar
[320]
D. Chemla, W. Knox, D. Miller, S. Schmitt-Rink, J. Stark, and R. Zimmermann, The excitonic optical stark effect in semiconductor quantum wells probed with femtosecond optical pulses, J. Lumen. 44, 233 (1989)
CrossRef ADS Google scholar
[321]
E. J. Sie, C. H. Lui, Y. H. Lee, J. Kong, and N. Gedik, Observation of intervalley biexcitonic optical Stark effect in monolayer WS2, Nano Lett. 16(12), 7421 (2016)
CrossRef ADS Google scholar
[322]
E. J. Sie, A. J. Frenzel, Y. H. Lee, J. Kong, and N. Gedik, Intervalley biexcitons and many-body effects in monolayer MoS2, Phys. Rev. B 92(12), 125417 (2015)
CrossRef ADS Google scholar
[323]
T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Optical Stark effect in a quantum dot: Ultrafast control of single exciton polarizations, Phys. Rev. Lett. 92(15), 157401 (2004)
CrossRef ADS Google scholar
[324]
D. D. Awschalom and N. Samarth, in: Semiconductor Spintronics and Quantum Computation, Springer, 2002, pp 147–193
CrossRef ADS Google scholar
[325]
J. Gupta, R. Knobel, N. Samarth, and D. Awschalom, Ultrafast manipulation of electron spin coherence, Science 292(5526), 2458 (2001)
CrossRef ADS Google scholar
[326]
D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Complete quantum control of a single quantum dot spin using ultrafast optical pulses, Nature 456(7219), 218 (2008)
CrossRef ADS Google scholar
[327]
J. Berezovsky, M. Mikkelsen, N. Stoltz, L. Coldren, and D. Awschalom, Picosecond coherent optical manipulation of a single electron spin in a quantum dot, Science 320(5874), 349 (2008)
CrossRef ADS Google scholar
[328]
M. Mikkelsen, J. Berezovsky, and D. Awschalom, Ultrafast optical manipulation of single electron spins in quantum dots, Solid State Commun. 149(35–36), 1451 (2009)
CrossRef ADS Google scholar
[329]
D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
CrossRef ADS Google scholar
[330]
G. Moody, C. K. Dass, K. Hao, C. H. Chen, L. J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun. 6(1), 8315 (2015)
CrossRef ADS Google scholar
[331]
P. Dey, J. Paul, Z. Wang, C. Stevens, C. Liu, A. Romero, J. Shan, D. Hilton, and D. Karaiskaj, Optical coherence in atomic-monolayer transition-metal dichalcogenides limited by electron-phonon interactions, Phys. Rev. Lett. 116(12), 127402 (2016)
CrossRef ADS Google scholar
[332]
L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, On-chip optical isolation in monolithically integrated non-reciprocal optical resonators, Nat. Photon. 5(12), 758 (2011)
CrossRef ADS Google scholar
[333]
E. J. Lenferink, G. Wei, and N. P. Stern, Coherent optical non-reciprocity in axisymmetric resonators, Opt. Express 22(13), 16099 (2014)
CrossRef ADS Google scholar
[334]
M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, Quantum optical circulator controlled by a single chirally coupled atom, Science 354(6319), 1577 (2016)
CrossRef ADS Google scholar
[335]
D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire, W. Yao, D. Xiao, K.M. C. Fu, and X. Xu, Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics, Sci. Adv. 3(5), e1603113 (2017)
CrossRef ADS Google scholar
[336]
A. Kavokin, G. Malpuech, and M. Glazov, Optical spin Hall effect,Phys. Rev. Lett. 95(13), 136601 (2005)
CrossRef ADS Google scholar
[337]
O. Bleu, D. Solnyshkov, and G. Malpuech, Optical valley Hall effect based on transitional metal dichalcogenide cavity polaritons, Phys. Rev. B 96(16), 165432 (2017)
CrossRef ADS Google scholar
[338]
T. Karzig, C. E. Bardyn, N. H. Lindner, and G. Refael, Topological polaritons, Phys. Rev. X 5(3), 031001 (2015)
CrossRef ADS Google scholar
[339]
Y. V. Kartashov and D. V. Skryabin, Bistable topological insulator with exciton-polaritons, Phys. Rev. Lett. 119(25), 253904 (2017)
CrossRef ADS Google scholar
[340]
N. Gippius, I. Shelykh, D. Solnyshkov, S. Gavrilov, Y. G. Rubo, A. Kavokin, S. Tikhodeev, and G. Malpuech, Polarization multistability of cavity polaritons, Phys. Rev. Lett. 98(23), 236401 (2007)
CrossRef ADS Google scholar
[341]
T. Paraïso, M. Wouters, Y. Léger, F. Morier-Genoud, and B. Deveaud-Plédran, Multistability of a coherent spin ensemble in a semiconductor microcavity, Nat. Mater. 9(8), 655 (2010)
CrossRef ADS Google scholar
[342]
V. M. Menon, L. I. Deych, and A. A. Lisyansky, Towards polaritonic logic circuits, Nat. Photon. 4(6), 345 (2010)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(25604 KB)

Accesses

Citations

Detail

Sections
Recommended

/