Practical pulse engineering: Gradient ascent without matrix exponentiation

Gaurav Bhole, Jonathan A. Jones

PDF(140 KB)
PDF(140 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 130312. DOI: 10.1007/s11467-018-0791-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Practical pulse engineering: Gradient ascent without matrix exponentiation

Author information +
History +

Abstract

Since 2005, there has been a huge growth in the use of engineered control pulses to perform desired quantum operations in systems such as nuclear magnetic resonance quantum information processors. These approaches, which build on the original gradient ascent pulse engineering algorithm, remain computationally intensive because of the need to calculate matrix exponentials for each time step in the control pulse. In this study, we discuss how the propagators for each time step can be approximated using the Trotter–Suzuki formula, and a further speedup achieved by avoiding unnecessary operations. The resulting procedure can provide substantial speed gain with negligible costs in the propagator error, providing a more practical approach to pulse engineering.

Keywords

quantum information / coherent control / pulse sequences in nuclear magnetic resonance

Cite this article

Download citation ▾
Gaurav Bhole, Jonathan A. Jones. Practical pulse engineering: Gradient ascent without matrix exponentiation. Front. Phys., 2018, 13(3): 130312 https://doi.org/10.1007/s11467-018-0791-1

References

[1]
C. H. Bennett and D. P. DiVincenzo, Quantum information and computation, Nature 404(6775), 247 (2000)
CrossRef ADS Google scholar
[2]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
[3]
C. A. Ryan, C. Negrevergne, M. Laforest, E. Knill, and R. Laflamme, Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods, Phys. Rev. A 78(1), 012328 (2008)
CrossRef ADS Google scholar
[4]
D. Lu, K. Li, J. Li, H. Katiyar, A. J. Park, G. Feng, T. Xin, H. Li, G. Long, A. Brodutch, J. Baugh, B. Zeng, and R. Laflamme, Enhancing quantum control by bootstrapping a quantum processor of 12 qubits, npj Quantum Information 3, 45 (2017)
[5]
R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford: Oxford University Press, 1987
[6]
N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms, J. Magn. Reson. 172(2), 296 (2005)
CrossRef ADS Google scholar
[7]
P. de Fouquieres, S. G. Schirmer, S. J. Glaser, and I. Kuprov, Second order gradient ascent pulse engineering, J. Magn. Reson. 212(2), 412 (2011)
CrossRef ADS Google scholar
[8]
D. L. Goodwin and I. Kuprov, Modified Newton–Raphson GRAPE methods for optimal control of spin systems, J. Chem. Phys. 144(20), 204107 (2016)
CrossRef ADS Google scholar
[9]
D. G. Lucarelli, Quantum optimal control via gradient ascent in function space and the time-bandwidth quantum speed limit, arXiv: 1611.00188 (2016)
[10]
C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45(1), 3 (2003)
CrossRef ADS Google scholar
[11]
N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM J. Matrix Anal. Appl. 26(4), 1179 (2005)
CrossRef ADS Google scholar
[12]
A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM J. Matrix Anal. Appl. 31(3), 970 (2010)
CrossRef ADS Google scholar
[13]
I. I. Maximov, Z. Tošner, and N. C. Nielsen, Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms, J. Chem. Phys. 128, 184505 (2008)
CrossRef ADS Google scholar
[14]
S. C. Hou, L. C. Wang, and X. X. Yi, Realization of quantum gates by Lyapunov control, Phys. Lett. A 378(9), 699 (2014)
CrossRef ADS Google scholar
[15]
T. Caneva, T. Calarco, and S. Montangero, Chopped random-basis quantum optimization, Phys. Rev. A 84(2), 022326 (2011)
CrossRef ADS Google scholar
[16]
G. Bhole, V. S. Anjusha, and T. S. Mahesh, Steering quantum dynamics via bang-bang control: Implementing optimal fixed-point quantum search algorithm, Phys. Rev. A 93(4), 042339 (2016)
CrossRef ADS Google scholar
[17]
G. Bhole and T. S. Mahesh, Rapid exponentiation using discrete operators: Applications in optimizing quantum controls and simulating quantum dynamics, arXiv: 1707.02162 (2017)
[18]
M. Suzuki, Quantum statistical Monte Carlo methods and applications to spin systems, J. Stat. Phys. 43(5–6), 883 (1986)
CrossRef ADS Google scholar
[19]
K. Waldherr, T. Huckle, T. Auckenthaler, U. Sander, and T. Schulte-Herbrüggen, High Performance Computing in Science and Engineering, Springer, 2010, Ch. Fast 3D Block Parallelisation for the Matrix Multiplication Prefix Problem, pp 39–50
[20]
D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H.Zurek, T. F. Havel, and S. S. Somaroo, Experimental quantum error correction, Phys. Rev. Lett. 81(10), 2152 (1998)
CrossRef ADS Google scholar
[21]
S. Boutin, C. K. Andersen, J. Venkatraman, A. J. Ferris, and A. Blais, Resonator reset in circuit QED by optimal control for large open quantum systems, Phys. Rev. A 96(4), 042315 (2017)
CrossRef ADS Google scholar
[22]
T. Xin, S. Huang, S. Lu, K. Li, Z. Luo, Z. Yin, J. Li, D. Lu, G. Long, and B. Zeng, NMRCloudQ: A quantum cloud experience on a nuclear magnetic resonance quantum computer, Sci. Bull. 63(1), 17 (2018)
CrossRef ADS Google scholar
[23]
Y. Zhang, C. A. Ryan, R. Laflamme, and J. Baugh, Coherent control of two nuclear spins using the anisotropic hyperfine interaction, Phys. Rev. Lett. 107(17), 170503 (2011)
CrossRef ADS Google scholar
[24]
F. Dolde, V. Bergholm, Y. Wang, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, F. Jelezko, P. Neumann, T. Schulte-Herbrüggen, J. Biamonte, and J. Wrachtrup, High-fidelity spin entanglement using optimal control, Nat. Commun. 5, 3371 (2014)
CrossRef ADS Google scholar
[25]
V. Nebendahl, H. Häffner, and C. F. Roos, Optimal control of entangling operations for trapped-ion quantum computing, Phys. Rev. A 79(1), 012312 (2009)
CrossRef ADS Google scholar
[26]
R. Fisher, F. Helmer, S. J. Glaser, F. Marquardt, and T. Schulte-Herbrüggen, Optimal control of circuit quantum electrodynamics in one and two dimensions, Phys. Rev. B 81(8), 085328 (2010)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(140 KB)

Accesses

Citations

Detail

Sections
Recommended

/