Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure

Zhen-Zhong Yan, Zhao-Han Jiang, Jun-Peng Lu, Zhen-Hua Ni

PDF(7127 KB)
PDF(7127 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 138115. DOI: 10.1007/s11467-018-0785-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure

Author information +
History +

Abstract

Integration of heterogenous materials produces compelling physical phenomena and increased performance of optoelectronic devices. In this work, we integrate CsPbBr3 microplate with WS2 monolayer to investigate the interfacial carrier transfer mechanism in the heterojunction. The quenching of photoluminescence (PL) emission from CsPbBr3 and WS2 after heterostructure formation indicates efficient charge transfer in the junction. Low-temperature PL spectra reveal that the decreasing PL of WS2 arises from the vanishing of biexcitons. Photodetection based on the WS2/CsPbBr3 heterostructure is demonstrated. The higher performance from the junction further certifies the occurrence of charge transfer in the heterojunction.

Keywords

TMDs / inorganic perovskite / heterostructure / charge transfer

Cite this article

Download citation ▾
Zhen-Zhong Yan, Zhao-Han Jiang, Jun-Peng Lu, Zhen-Hua Ni. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys., 2018, 13(4): 138115 https://doi.org/10.1007/s11467-018-0785-z

References

[1]
Editorial, Graphene is not alone, Nat. Nanotechnol. 7(11), 683 (2012)
CrossRef ADS Google scholar
[2]
Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, and W. Chen, Twodimensional transition metal dichalcogenides: Interface and defect engineering, Chem. Soc. Rev. 47(9), 3100 (2018)
CrossRef ADS Google scholar
[3]
Y. Lee, X. Zhang, W. Zhang, M. Chang, C. Lin, K. Chang, Y. Yu, J. T. Wang, C. Chang, L. Li, and T. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater. 24(17), 2320 (2012)
CrossRef ADS Google scholar
[4]
A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Optical generation of excitonic valley coherence in monolayer WSe2, Nat. Nanotechnol. 8(9), 634 (2013)
CrossRef ADS Google scholar
[5]
H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)
CrossRef ADS Google scholar
[6]
K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)
CrossRef ADS Google scholar
[7]
T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Valleyselective circular dichroism of monolayer molybdenum disulphide, Nat. Commun. 3(1), 887 (2012)
CrossRef ADS Google scholar
[8]
J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions, Nat. Nanotechnol. 9(4), 268 (2014)
CrossRef ADS Google scholar
[9]
A. Pospischil, M. M. Furchi, and T. Mueller, Solarenergy conversion and light emission in an atomic monolayer p–n diode, Nat. Nanotechnol. 9(4), 257 (2014)
CrossRef ADS Google scholar
[10]
W. Wang, R. Du, X. Guo, J. Jiang, W. Zhao, Z. Ni, X. Wang, Y. You, and Z. Ni, Interfacial amplification for graphene-based position-sensitive-detectors, Light Sci. Appl. 6(10), e17113 (2017)
CrossRef ADS Google scholar
[11]
J. Lu, J. H. Lu, H. Liu, B. Liu, K. X. Chan, J. Lin, W. Chen, K. P. Loh, and C. H. Sow, Improved photoelectrical properties of MoS2 films after laser micromachining, ACS Nano 8(6), 6334 (2014)
CrossRef ADS Google scholar
[12]
S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, Dyesensitized MoS2 photodetector with enhanced spectral photoresponse, ACS Nano 8(8), 8285 (2014)
CrossRef ADS Google scholar
[13]
D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, Hybrid 2D-0D MoS2- PbS quantum dot photodetectors,Adv. Mater. 27(1), 176 (2015)
CrossRef ADS Google scholar
[14]
D. Jariwala, V. K. Sangwan, C. C. Wu, P. L. Prabhumirashi, M. L. Geier, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode, Proc. Natl. Acad. Sci. USA 110(45), 18076 (2013)
CrossRef ADS Google scholar
[15]
S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites, Nat. Commun. 6(1) (2015)
[16]
V. K. Ravi, G. B. Markad, and A. Nag, Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X= Cl, Br, I) perovskite nanocrystals, ACS Energy Lett. 1(4), 665 (2016)
CrossRef ADS Google scholar
[17]
X. Song, X. Liu, D. Yu, C. Huo, J. Ji, X. Li, S. Zhang, Y. Zou, G. Zhu, Y. Wang, M. Wu, A. Xie, and H. Zeng, Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation, ACS Appl. Mater. Inter. 10(3), 2801 (2018)
CrossRef ADS Google scholar
[18]
D. Kwak, D. Lim, H. Ra, P. Ramasamy, and J. Lee, High performance hybrid graphene–CsPbBr3−xIxperovskite nanocrystal photodetector, RSC Adv. 6(69), 65252 (2016)
CrossRef ADS Google scholar
[19]
H. Li, X. Zheng, Y. Liu, Z. Zhang, and T. Jiang, Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure, Nanoscale 10(4), 1650 (2018)
CrossRef ADS Google scholar
[20]
Y. Liu, H. Li, X. Zheng, X. Cheng, and T. Jiang, Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots, Opt. Mater. Express 7(4), 1327 (2017)
CrossRef ADS Google scholar
[21]
H. W. Liu, J. P. Lu, H. M. Fan, C. H. Sow, S. H. Tang, and X. H. Zhang, Temperature and composition dependence of photoluminescence dynamics in CdSxSe1−x(0≤x≤1) nanobelts, J. Appl. Phys. 111(7), 073112 (2012)
CrossRef ADS Google scholar
[22]
L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett. 15(6), 3692 (2015)
CrossRef ADS Google scholar
[23]
V. D. Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites, Nat. Commun. 5, 3586 (2014)
CrossRef ADS Google scholar
[24]
G. Moody, C. Kavir Dass, K. Hao, C. Chen, L. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun. 6(1), 8315 (2015)
CrossRef ADS Google scholar
[25]
G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, Excitonic switches operating at around 100 K, Nat. Photonics 3(10), 577 (2009)
CrossRef ADS Google scholar
[26]
T. Byrnes, N. Y. Kim, and Y. Yamamoto, Exciton–polariton condensates, Nat. Phys. 10(11), 803 (2014)
[27]
A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. López-Urías, J. Charlier, H. Terrones, and M. Terrones, Identification of individual and few layers of WS2 using Raman spectroscopy, Sci. Rep. 3(1), 1755 (2013)
CrossRef ADS Google scholar
[28]
J. Lu, H. Liu, E. S. Tok, and C. Sow, Interactions between lasers and two-dimensional transition metal dichalcogenides, Chem. Soc. Rev. 45(9), 2494 (2016)
CrossRef ADS Google scholar
[29]
X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures, Nat. Nanotechnol. 9(9), 682 (2014)
CrossRef ADS Google scholar
[30]
G. Liu, W. Shan, Y. Yao, W. Yao, and D. Xiao, Threeband tight-binding model for monolayers of group-VIB transition metal dichalcogenides, Phys. Rev. B 88(8), 085433 (2013)
CrossRef ADS Google scholar
[31]
M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, Cesium enhances long-term stability of lead bromide perovskite-based solar cells, J. Phys. Chem. Lett. 7(1), 167 (2016)
CrossRef ADS Google scholar
[32]
H. Liu, J. Lu, K. Ho, Z. Hu, Z. Dang, A. Carvalho, H. R. Tan, E. S. Tok, and C. H. Sow, Fluorescence concentric triangles: A case of chemical heterogeneity in WS2 atomic monolayer, Nano Lett. 16(9), 5559 (2016)
CrossRef ADS Google scholar
[33]
M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, Biexciton emission from edges and grain boundaries of triangular WS2 monolayers, ACS Nano 10(2), 2399 (2016)
CrossRef ADS Google scholar
[34]
A. Venkatakrishnan, H. Chua, P. Tan, Z. Hu, H. Liu, Y. Liu, A. Carvalho, J. Lu, and C. H. Sow, Microsteganography on WS2 monolayers tailored by direct laser painting, ACS Nano 11(1), 713 (2017)
CrossRef ADS Google scholar
[35]
J. C. Kim, D. R. Wake, and J. P. Wolfe, Thermo dynamics of biexcitons in a GaAs quantum well, Phys. Rev. B 50(20), 15099 (1994)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(7127 KB)

Accesses

Citations

Detail

Sections
Recommended

/