Two-dimensional aluminum monoxide nanosheets: A computational study
Shiru Lin, Yanchao Wang, Zhongfang Chen
Two-dimensional aluminum monoxide nanosheets: A computational study
By means of density functional theory (DFT) computations and particle-swarm optimization (PSO) structure searches, we herein predict five low-lying energy structures of two-dimensional (2D) aluminum monoxide (AlO) nanosheets. Their high cohesive energy, absence of imaginary phonon dispersion, and good thermal stability make them feasible targets for experimental realization. These monolayers exhibit diverse structural topologies, for instance, PmA- and Pmm-AlO possess buckled four- and sixmembered AlO rings, whereas P62-, PmB-, and P6m-AlO have pores of varied sizes. Interestingly, the most energetically preferred monolayers, PmA- and Pmm-AlO, feature wide band gaps (2.45 and 5.13 eV, respectively), which are promising for green and blue light-emitting devices (LEDs) and photodetectors.
2D materials / density functional calculations / particle swarm optimization / wide-band-gap semiconductor
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[2] |
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef
ADS
Google scholar
|
[3] |
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
CrossRef
ADS
Google scholar
|
[4] |
K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef
ADS
Google scholar
|
[5] |
S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100(1), 016602 (2008)
CrossRef
ADS
Google scholar
|
[6] |
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
CrossRef
ADS
Google scholar
|
[7] |
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional xene sheets, Nat. Mater. 16(2), 163 (2017)
CrossRef
ADS
Google scholar
|
[8] |
Q. Tang and Z. Zhou, Graphene-analogous lowdimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013)
CrossRef
ADS
Google scholar
|
[9] |
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
CrossRef
ADS
Google scholar
|
[10] |
S. Lin, J. Gu, Y. Wang, Y. Wang, S. Zhang, X. Liu, H. Zeng, and Z. Chen, Porous silaphosphorene, silaarsenene and silaantimonene: A sweet marriage of Si and P/As/Sb, J. Mater. Chem. A 6(8), 3738 (2018)
CrossRef
ADS
Google scholar
|
[11] |
G. Wang, R. Pandey, and S. P. Karna, Atomically thin group V elemental films: theoretical investigations of antimonene allotropes, ACS Appl. Mater. Interfaces 7(21), 11490 (2015)
CrossRef
ADS
Google scholar
|
[12] |
L. Kou, C. Chen, and S. C. Smith, Phosphorene: Fabrication, properties, and applications, J. Phys. Chem. Lett. 6(14), 2794 (2015)
CrossRef
ADS
Google scholar
|
[13] |
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
CrossRef
ADS
Google scholar
|
[14] |
Q. Tang, Z. Zhou, and Z. Chen, Innovation and discovery of graphene-like materials via density-functional theory computations, Wiley Interdiscip. Rev. Comput. Mol. Sci. 5(5), 360 (2015)
CrossRef
ADS
Google scholar
|
[15] |
J. J. Zhao, H. S. Liu, Z. M. Yu, R. G. Quhe, S. Zhou, Y. Y. Wang, C. C. Liu, H. X. Zhong, N. N. Han, J. Lu, Y. G. Yao, and K. H. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)
CrossRef
ADS
Google scholar
|
[16] |
G. G. Guzmán-Verri and L. C. Lew Yan Voon, Electronic structure of silicon-based nanostructures, Phys. Rev. B 76(7), 075131 (2007)
CrossRef
ADS
Google scholar
|
[17] |
L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, and K. Wu, Evidence for Dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett. 109(5), 056804 (2012)
CrossRef
ADS
Google scholar
|
[18] |
P. De Padova, P. Vogt, A. Resta, J. Avila, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, T. Hirahara, T. Shirai, S. Hasegawa, M. Carmen Asensio, and G. Le Lay, Evidence of Dirac fermions in multilayer silicene, Appl. Phys. Lett. 102(16), 163106 (2013)
CrossRef
ADS
Google scholar
|
[19] |
E. Durgun, S. Tongay, and S. Ciraci, Silicon and III-V compound nanotubes: Structural and electronic properties, Phys. Rev. B 72(7), 075420 (2005)
CrossRef
ADS
Google scholar
|
[20] |
U. Röthlisberger, W. Andreoni, and M. Parrinello, Structure of nanoscale silicon clusters, Phys. Rev. Lett. 72(5), 665 (1994)
CrossRef
ADS
Google scholar
|
[21] |
P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett. 108(15), 155501 (2012)
CrossRef
ADS
Google scholar
|
[22] |
S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)
CrossRef
ADS
Google scholar
|
[23] |
K. Takeda and K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B 50(20), 14916 (1994)
CrossRef
ADS
Google scholar
|
[24] |
Y. Jing, Z. Zhou, C. R. Cabrera, and Z. F. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A 2(31), 12104 (2014)
CrossRef
ADS
Google scholar
|
[25] |
M. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay, Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys. 16(9), 095002 (2014)
CrossRef
ADS
Google scholar
|
[26] |
M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V. V. Afanas’ev, and A. Stesmans, Electronic properties of hydrogenated silicene and germanene, Appl. Phys. Lett. 98(22), 223107 (2011)
CrossRef
ADS
Google scholar
|
[27] |
L. Li, S. Z. Lu, J. Pan, Z. Qin, Y. Q. Wang, Y. Wang, G. Y. Cao, S. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)
CrossRef
ADS
Google scholar
|
[28] |
S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)
CrossRef
ADS
Google scholar
|
[29] |
F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)
CrossRef
ADS
Google scholar
|
[30] |
P. Z. Tang, P. C. Chen, W. D. Cao, H. Q. Huang, S. Cahangirov, L. D. Xian, Y. Xu, S. C. Zhang, W. H. Duan, and A. Rubio, Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator, Phys. Rev. B 90(12), 121408 (2014)
CrossRef
ADS
Google scholar
|
[31] |
S. Rachel and M. Ezawa, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene, Phys. Rev. B 89(19), 195303 (2014)
CrossRef
ADS
Google scholar
|
[32] |
N. Gao, H. S. Liu, S. Zhou, Y. Z. Bai, and J. J. Zhao, Interaction between post-graphene group-iv honeycomb monolayers and metal substrates: Implication for synthesis and structure control, J. Phys. Chem. C 121(9), 5123 (2017)
CrossRef
ADS
Google scholar
|
[33] |
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
CrossRef
ADS
Google scholar
|
[34] |
H. O. Churchill and P. Jarillo-Herrero, Phosphorus joins the family, Nat. Nanotechnol. 9(5), 330 (2014)
CrossRef
ADS
Google scholar
|
[35] |
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
CrossRef
ADS
Google scholar
|
[36] |
A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, and A. H. Castro Neto, Phosphorene: From theory to applications, Nat. Rev. Mater. 1(11), 16061 (2016)
CrossRef
ADS
Google scholar
|
[37] |
Y. Jing, X. Zhang, and Z. Zhou, Phosphorene: What can we know from computations? Wiley Interdiscip. Rev. Comput. Mol. Sci. 6(1), 5 (2016)
CrossRef
ADS
Google scholar
|
[38] |
R. Fei and L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus, Nano Lett. 14(5), 2884 (2014)
CrossRef
ADS
Google scholar
|
[39] |
L. Wang, A. Kutana, X. Zou, and B. I. Yakobson, Electro-mechanical anisotropy of phosphorene, Nanoscale 7(21), 9746 (2015)
CrossRef
ADS
Google scholar
|
[40] |
H. S. Tsai, S. W. Wang, C. H. Hsiao, C. W. Chen, H. Ouyang, Y. L. Chueh, H. C. Kuo, and J. H. Liang, Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons, Chem. Mater. 28(2), 425 (2016)
CrossRef
ADS
Google scholar
|
[41] |
S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetalsemiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)
CrossRef
ADS
Google scholar
|
[42] |
S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gómez- Herrero, P. Ares, F. Zamora, Z. Zhu, and H. Zeng, Recent progress in 2D group-VA semiconductors: From theory to experiment, Chem. Soc. Rev. 47(3), 982 (2018)
CrossRef
ADS
Google scholar
|
[43] |
S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities, Angew. Chem. Int. Ed. 55(5), 1666 (2016)
CrossRef
ADS
Google scholar
|
[44] |
H. S. Tsai, C. W. Chen, C. H. Hsiao, H. Ouyang, and J. H. Liang, The advent of multilayer antimonene nanoribbons with room temperature orange light emission,Chem. Commun. 52(54), 8409 (2016)
CrossRef
ADS
Google scholar
|
[45] |
P. Ares, F. Aguilar-Galindo, D. Rodriguez-San-Miguel, D. A. Aldave, S. Diaz-Tendero, M. Alcami, F. Martin, J. Gomez-Herrero, and F. Zamora, Mechanical isolation of highly stable antimonene under ambient conditions, Adv. Mater. 28(30), 6332 (2016)
CrossRef
ADS
Google scholar
|
[46] |
C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gomez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellan, and F. Zamora, Few-layer antimonene by liquid-phase exfoliation, Angew. Chem. Int. Ed. 55(46), 14345 (2016)
CrossRef
ADS
Google scholar
|
[47] |
J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7, 13352 (2016)
CrossRef
ADS
Google scholar
|
[48] |
J. H. Yuan, N. N. Yu, K. H. Xue, and X. S. Miao, Stability, electronic and thermodynamic properties of aluminene from first-principles calculations, Appl. Surf. Sci. 409, 85 (2017)
CrossRef
ADS
Google scholar
|
[49] |
C. Kamal, A. Chakrabarti, and M. Ezawa, Aluminene as highly hole-doped graphene, New J. Phys. 17(8), 083014 (2015)
CrossRef
ADS
Google scholar
|
[50] |
D. C. Tyte, B2[π]-A2[σ] band system of aluminium monoxide, Nature 202(4930), 383 (1964)
CrossRef
ADS
Google scholar
|
[51] |
M. Hoch and H. L. Johnston, Formation, stability and crystal structure of the solid aluminum suboxides: Al2O and AlO1, J. Am. Chem. Soc. 76(9), 2560 (1954)
CrossRef
ADS
Google scholar
|
[52] |
J. Koput and K. A. Peterson, ab initio prediction of the potential energy surface and vibrational–rotational energy levels of X2A′ BeOH, J. Phys. Chem. A 107(19), 3981 (2003)
CrossRef
ADS
Google scholar
|
[53] |
C. Dohmeier, D. Loos, and H. Schnockel, Aluminum(I) and gallium(I) compounds: Syntheses, structures, and reactions, Angew. Chem. Int. Ed. Engl. 35(2), 129 (1996)
CrossRef
ADS
Google scholar
|
[54] |
C. Liang, Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes, J. Electrochem. Soc. 120(10), 1289 (1973)
CrossRef
ADS
Google scholar
|
[55] |
S. Zhang, J. Yu, H. Li, D. Mao, and G. Lu, Higheffective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism, Sci. Rep. 6(1), 33196 (2016)
CrossRef
ADS
Google scholar
|
[56] |
T. T. Song, M. Yang, J. W. Chai, M. Callsen, J. Zhou, T. Yang, Z. Zhang, J. S. Pan, D. Z. Chi, Y. P. Feng, and S. J. Wang, The stability of aluminium oxide monolayer and its interface with two-dimensional materials, Sci. Rep. 6(1), 29221 (2016)
CrossRef
ADS
Google scholar
|
[57] |
M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14(11), 2717 (2002)
CrossRef
ADS
Google scholar
|
[58] |
M. Kuisma, J. Ojanen, J. Enkovaara, and T. Rantala, Kohn-Sham potential with discontinuity for band gap materials, Phys. Rev. B 82(11), 115106 (2010)
CrossRef
ADS
Google scholar
|
[59] |
I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W. Jacobsen, Computational screening of perovskite metal oxides for optimal solar light capture, Energy Environ. Sci. 5(2), 5814 (2012)
CrossRef
ADS
Google scholar
|
[60] |
P. Miró, M. Ghorbani-Asl, and T. Heine, Two dimensional materials beyond MoS2: Noble-transition-metal dichalcogenides, Angew. Chem. Int. Ed. 53(11), 3015 (2014)
CrossRef
ADS
Google scholar
|
[61] |
H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15(1), 48 (2016)
CrossRef
ADS
Google scholar
|
[62] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
CrossRef
ADS
Google scholar
|
[63] |
K. Takahashi, A. Yoshikawa and A. Sandhu, Wide bandgap Semiconductors, Berlin Heidelberg: Springer- Verlag, 239 (2007)
CrossRef
ADS
Google scholar
|
[64] |
M. N. Yoder, Wide bandgap semiconductor materials and devices, IEEE Trans. Electron Dev. 43(10), 1633 (1996)
CrossRef
ADS
Google scholar
|
[65] |
A. Lafond, C. Guillot-Deudon, J. Vidal, M. Paris, C. La, and S. Jobic, Substitution of Li for Cu in Cu2ZnSnS4: Toward wide band gap absorbers with low cation disorder for thin film solar cells, Inorg. Chem. 56(5), 2712 (2017)
CrossRef
ADS
Google scholar
|
[66] |
T. P. Chow and R. Tyagi, Wide bandgap compound semiconductors for superior high-voltage unipolar power devices, IEEE Trans. Electron Dev. 41(8), 1481 (1994)
CrossRef
ADS
Google scholar
|
[67] |
J. Casady and R. W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for hightemperature applications, Solid State Electron, 39(10), 1409 (1996)
CrossRef
ADS
Google scholar
|
[68] |
P. G. Neudeck, R. S. Okojie, and L. Y. Chen, Hightemperature electronics-a role for wide bandgap semiconductors? Proc. IEEE 90(6), 1065 (2002)
CrossRef
ADS
Google scholar
|
[69] |
M. Topsakal, E. Aktürk, and S. Ciraci, First-principles study of two-and one-dimensional honeycomb structures of boron nitride, Phys. Rev. B 79(11), 115442 (2009)
CrossRef
ADS
Google scholar
|
[70] |
K. Watanabe, T. Taniguchi, and H. Kanda, Directbandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater. 3(6), 404 (2004)
CrossRef
ADS
Google scholar
|
[71] |
Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science 317(5840), 932 (2007)
CrossRef
ADS
Google scholar
|
[72] |
E. Monroy, F. Omnès, and F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Technol. 18(4), R33 (2003)
CrossRef
ADS
Google scholar
|
[73] |
H. Y. Lu, A. S. Cuamba, L. Geng, L. Hao, Y. M. Qi, and C. Ting, C3H2: A wide-band-gap semiconductor with strong optical absorption, Phys. Rev. B 96(16), 165420 (2017)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |