Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity

Rong-Xuan Zhong, Zhao-Pin Chen, Chun-Qing Huang, Zhi-Huan Luo, Hai-Shu Tan, Boris A. Malomed, Yong-Yao Li

PDF(5127 KB)
PDF(5127 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 130311. DOI: 10.1007/s11467-018-0778-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity

Author information +
History +

Abstract

We develop a method for creating two- and one-dimensional (2D and 1D) self-trapped modes in binary spin-orbit-coupled Bose–Einstein condensates with the contact repulsive interaction, whose local strength grows sufficiently rapidly from the center to the periphery. In particular, an exact semi-vortex (SV) solution is found for the anti-Gaussian radial modulation profile. The exact modes are included in the numerically produced family of SV solitons. Other families, in the form of mixed modes (MMs), as well as excited states of SVs and MMs, are also produced. Although the excited states are unstable in all previously studied models, they are partially stable in the present one. In the 1D version of the system, exact solutions for the counterpart of SVs, namely, semi-dipole solitons, are also found. Families of semi-dipoles, as well as the 1D version of MMs, are produced numerically.

Keywords

spin-orbit coupling / semi-vortex / mixed mode / excited states

Cite this article

Download citation ▾
Rong-Xuan Zhong, Zhao-Pin Chen, Chun-Qing Huang, Zhi-Huan Luo, Hai-Shu Tan, Boris A. Malomed, Yong-Yao Li. Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity. Front. Phys., 2018, 13(4): 130311 https://doi.org/10.1007/s11467-018-0778-y

References

[1]
L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303(5–6), 259 (1998)
CrossRef ADS Google scholar
[2]
G. Fibich and G. Papanicolaou, Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension, SIAM J. Appl. Math. 60(1), 183 (1999)
CrossRef ADS Google scholar
[3]
A. S. Desyatnikov, L. Torner, and Y. S. Kivshar, Optical vortices and vortex solitons, Prog. Opt. 47, 291 (2005)
CrossRef ADS Google scholar
[4]
B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, Spatiotemporal optical solitons, J. Optics B: Quant. Semicl. Opt. 7(5), R53 (2005)
CrossRef ADS Google scholar
[5]
B. Malomed, L. Torner, F. Wise, and D. Mihalache, Viewpoint: On multidimensional solitons and their legacy in contemporary Atomic, Molecular and Optical physics, J. Phys.: At. Mol. Opt. Phys. 49(17), 170502 (2016)
CrossRef ADS Google scholar
[6]
D. Mihalache, Multidimensional localized structures in optics and Bose–Einstein condensates: A selection of recent studies, Rom. J. Phys. 59, 295 (2014)
[7]
B. A. Malomed, Multidimensional solitons: Wellestablished results and novel findings, Eur. Phys. J. Spec. Top. 225(13–14), 2507 (2016)
CrossRef ADS Google scholar
[8]
V. S. Bagnato, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, and D. Mihalache, Bose–Einstein condensation: Twenty years after, Rom. Rep. Phys. 67, 5 (2015)
[9]
D. Mihalache, Multidimensional localized structures in optical and matter-wave media: A topical survey of recent literature, Rom. Rep. Phys. 69, 403 (2017)
[10]
J. Zeng and B. A. Malomed, Localized dark solitons and vortices in defocusing media with spatially inhomogeneous nonlinearity, Phys. Rev. E 95, 052214 (2017)
CrossRef ADS Google scholar
[11]
X. Gao and J. Zeng, Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices, Front. Phys. 13(1), 130501 (2018)
CrossRef ADS Google scholar
[12]
O. V. Borovkova, Y. V. Kartashov, B. A. Malomed, and L. Torner, Algebraic bright and vortex solitons in defocusing media, Opt. Lett. 36(16), 3088 (2011)
CrossRef ADS Google scholar
[13]
O. V. Borovkova, Y. V. Kartashov, L. Torner, and B. A. Malomed, Bright solitons from defocusing nonlinearities, Phys. Rev. E 84, 035602(R) (2011)
[14]
Y. V. Kartashov, V. A. Vysloukh, L. Torner, and B. A. Malomed, Self-trapping and splitting of bright vector solitons under inhomogeneous defocusing nonlinearities, Opt. Lett. 36(23), 4587 (2011)
CrossRef ADS Google scholar
[15]
V. E. Lobanov, O. V. Borovkova, Y. V. Kartashov, B. A. Malomed, and L. Torner, Stable bright and vortex solitons in photonic crystal fibers with inhomogeneous defocusing nonlinearity, Opt. Lett. 37(11), 1799 (2012)
CrossRef ADS Google scholar
[16]
Q. Tian, L. Wu, Y. Zhang, and J. F. Zhang, Vortex solitons in defocusing media with spatially inhomogeneous nonlinearity, Phys. Rev. E 85(5), 056603 (2012)
CrossRef ADS Google scholar
[17]
Y. Wu, Q. Xie, H. Zhong, L. Wen, and W. Hai, Algebraic bright and vortex solitons in self-defocusing media with spatially inhomogeneous nonlinearity, Phys. Rev. A 87(5), 055801 (2013)
CrossRef ADS Google scholar
[18]
R. Driben, Y. V. Kartashov, B. A. Malomed, T. Meier, and L. Torner, Soliton gyroscopes in media with spatially growing repulsive nonlinearity, Phys. Rev. Lett. 112(2), 020404 (2014)
CrossRef ADS Google scholar
[19]
Y. V. Kartashov, B. A. Malomed, Y. Shnir, and L. Torner, Twisted toroidal vortex-solitons in inhomogeneous media with repulsive nonlinearity, Phys. Rev. Lett. 113(26), 264101 (2014)
CrossRef ADS Google scholar
[20]
R. Driben, Y. Kartashov, B. A. Malomed, T. Meier, and L. Torner, Three-dimensional hybrid vortex solitons, New J. Phys. 16(6), 063035 (2014)
CrossRef ADS Google scholar
[21]
J. Hukriede, D. Runde, and D. Kip, Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides, J. Phys. D 36(3), R1 (2003)
CrossRef ADS Google scholar
[22]
G. Roati, M. Zaccanti, C. D’Errico, J. Catani, M. Modugno, A. Simoni, M. Inguscio, and G. Modugno, 39K Bose–Einstein condensate with tunable interactions, Phys. Rev. Lett. 99(1), 010403 (2007)
CrossRef ADS Google scholar
[23]
S. E. Pollack, D. Dries, M. Junker, Y. P. Chen, T. A. Corcovilos, and R. G. Hulet, Extreme tunability of interactions in a 7Li Bose–Einstein condensate, Phys. Rev. Lett. 102(9), 090402 (2009)
CrossRef ADS Google scholar
[24]
F. K. Abdullaev, A. Gammal, and L. Tomio, Dynamics of bright matter-wave solitons in a Bose–Einstein condensate with inhomogeneous scattering length, J. Phys.: At. Mol. Opt. Phys. 37(3), 635 (2004)
CrossRef ADS Google scholar
[25]
L. W. Clark, L. C. Ha, C. Y. Xu, and C. Chin, Quantum dynamics with spatiotemporal control of interactions in a stable Bose–Einstein condensate, Phys. Rev. Lett. 115(15), 155301 (2015)
CrossRef ADS Google scholar
[26]
R. Yamazaki, S. Taie, S. Sugawa, and Y. Takahashi, Quantum dynamics with spatiotemporal control of interactions in a stable Bose–Einstein condensate, Phys. Rev. Lett. 105, 050405 (2010)
CrossRef ADS Google scholar
[27]
M. Yan, B. J. DeSalvo, B. Ramachandhran, H. Pu, and T. C. Killian, Controlling condensate collapse and expansion with an optical Feshbach resonance, Phys. Rev. Lett. 110(12), 123201 (2013)
CrossRef ADS Google scholar
[28]
D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Dürr, Control of a magnetic Feshbach resonance with laser light, Nat. Phys. 5(5), 339 (2009)
[29]
Y. Li, J. Liu, W. Pang, and B. A. Malomed, Matterwave solitons supported by field-induced dipole-dipole repulsion with spatially modulated strength, Phys. Rev. A 88(5), 053630 (2013)
CrossRef ADS Google scholar
[30]
F. Kh. Abdullaev, A. Gammal, B. A. Malomed, and L. Tomio, Bright solitons in Bose–Einstein condensates with fieldinduced dipole moments, J. Phys. B 47(7), 075301 (2014)
CrossRef ADS Google scholar
[31]
Y. Li, Z. Fan, Z. Luo, Y. Liu, H. He, J. Lü, J. Xie, C. Huang, and H. Tan, Cross-symmetry breaking of twocomponent discrete dipolar matter-wave solitons, Front. Phys. 12, 124206 (2017)
CrossRef ADS Google scholar
[32]
X. Chen, Y. Chuang, C. Lin, C. Wu, Y. Li, B. A. Malomed, and R. Lee, Magic tilt angle for stabilizing twodimensional solitons by dipole-dipole interactions, Phys. Rev. A 96, 043631 (2017)
CrossRef ADS Google scholar
[33]
Y. Li, W. Pang, J. Xu, C. Lee, B. A. Malomed, and L. Santos, Long-range transverse Ising model built with dipolar condensates in two-well arrays, New J. Phys. 19(1), 013030 (2017)
CrossRef ADS Google scholar
[34]
Y. J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Spin-orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)
CrossRef ADS Google scholar
[35]
D. L. Campbell, G. Juzeliūnas, and I. B. Spielman, Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms, Phys. Rev. A 84(2), 025602 (2011)
CrossRef ADS Google scholar
[36]
Y. Zhang, L. Mao, and C. Zhang, Mean-field dynamics of spin-orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 108(3), 035302 (2012)
CrossRef ADS Google scholar
[37]
V. Galitski and I. B. Spielman, Spin-orbit coupling in quantum gases, Nature 494(7435), 49 (2013)
CrossRef ADS Google scholar
[38]
H. Zhai, Degenerate quantum gases with spin-orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001 (2015)
CrossRef ADS Google scholar
[39]
Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, and J. W. Pan, Realization of two-dimensional spin-orbit coupling for Bose– Einstein condensates, Science 354(6308), 83 (2016)
CrossRef ADS Google scholar
[40]
Z. Meng, L. Huang, P. Peng, D. Li, L. Chen, Y. Xu, C. Zhang, P. Wang, and J. Zhang, Experimental observation of a topological band gap opening in ultracold Fermi gases with two-dimensional spin-orbit coupling, Phys. Rev. Lett. 117(23), 235304 (2016)
CrossRef ADS Google scholar
[41]
Y. Zhang, M. E. Mossman, T. Busch, P. Engels, and C. Zhang, Properties of spin-orbit-coupled Bose–Einstein condensates, Front. Phys. 11(3), 118103 (2016)
CrossRef ADS Google scholar
[42]
C. Wang, C. Gao, C. M. Jian, and H. Zhai, Spin-orbit coupled spinor Bose–Einstein condensates, Phys. Rev. Lett. 105(16), 160403 (2010)
CrossRef ADS Google scholar
[43]
T. Kawakami, T. Mizushima, and K. Machida, Textures of F= 2 spinor Bose–Einstein condensates with spinorbit coupling, Phys. Rev. A 84(1), 011607 (2011)
CrossRef ADS Google scholar
[44]
B. Ramachandhran, B. Opanchuk, X. J. Liu, H. Pu, P. D. Drummond, and H. Hu, Half-quantum vortex state in a spin-orbit-coupled Bose–Einstein condensate, Phys. Rev. A 85(2), 023606 (2012)
CrossRef ADS Google scholar
[45]
G. J. Conduit, Line of Dirac monopoles embedded in a Bose–Einstein condensate, Phys. Rev. A 86, 021605(R) (2012)
[46]
T. Kawakami, T. Mizushima, M. Nitta, and K. Machida, Stable skyrmions in SU(2) gauged Bose– Einstein condensates, Phys. Rev. Lett. 109(1), 015301 (2012)
CrossRef ADS Google scholar
[47]
V. Achilleos, D. J. Frantzeskakis, P. G. Kevrekidis, and D. E. Pelinovsky, Matter-wave bright solitons in spinorbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 110(26), 264101 (2013)
CrossRef ADS Google scholar
[48]
Y. V. Kartashov, V. V. Konotop, and F. Kh. Abdullaev, Gap solitons in a spin-orbit-coupled Bose–Einstein condensate, Phys. Rev. Lett. 111(6), 060402 (2013)
CrossRef ADS Google scholar
[49]
Y. Xu, Y. Zhang, and B. Wu, Bright solitons in spinorbit- coupled Bose–Einstein condensates, Phys. Rev. A 87(1), 013614 (2013)
CrossRef ADS Google scholar
[50]
H. Sakaguchi and B. Li, Vortex lattice solutions to the Gross–Pitaevskii equation with spin-orbit coupling in optical lattices, Phys. Rev. A 87(1), 015602 (2013)
CrossRef ADS Google scholar
[51]
D. A. Zezyulin, R. Driben, V. V. Konotop, and B. A. Malomed, Nonlinear modes in binary bosonic condensates with pseudo-spin-orbital coupling, Phys. Rev. A 88(1), 013607 (2013)
CrossRef ADS Google scholar
[52]
L. Salasnich and B. A. Malomed, Localized modes in dense repulsive and attractive Bose–Einstein condensates with spin-orbit and Rabi couplings, Phys. Rev. A 87(6), 063625 (2013)
CrossRef ADS Google scholar
[53]
Y. Cheng, G. Tang, and S. K. Adhikari, Localization of a spin-orbit-coupled Bose–Einstein condensate in a bichromatic optical lattice, Phys. Rev. A 89(6), 063602 (2014)
CrossRef ADS Google scholar
[54]
L. Salasnich, W. B. Cardoso, and B. A. Malomed, Localized modes in quasi-two-dimensional Bose–Einstein condensates with spin-orbit and Rabi couplings, Phys. Rev. A 90(3), 033629 (2014)
CrossRef ADS Google scholar
[55]
V. E. Lobanov, Y. V. Kartashov, and V. V. Konotop, Fundamental, multipole, and half-vortex gap solitons in spin-orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 112(18), 180403 (2014)
CrossRef ADS Google scholar
[56]
H. Sakaguchi and B. A. Malomed, Discrete and continuum composite solitons in Bose–Einstein condensates with the Rashba spin-orbit coupling in one and two dimensions, Phys. Rev. E 90(6), 062922 (2014)
CrossRef ADS Google scholar
[57]
S. Gautam and S. K. Adhikari, Vector solitons in a spinorbit- coupled spin-2 Bose–Einstein condensate, Phys. Rev. A 91(6), 063617 (2015)
CrossRef ADS Google scholar
[58]
Y. Zhang, Y. Xu, and T. Busch, Gap solitons in spinorbit- coupled Bose–Einstein condensates in optical lattices, Phys. Rev. A 91(4), 043629 (2015)
CrossRef ADS Google scholar
[59]
X. Zhu, H. Li, and Z. Shi, Defect matter-wave gap solitons in spin-orbit-coupled Bose–Einstein condensates in Zeeman lattices, Phys. Lett. A 380(40), 3253 (2016)
CrossRef ADS Google scholar
[60]
H. Lia, X. Zhua, and Z. Shi, Inverted solitons in a spinorbit- coupled Bose–Einstein condensate, Opt. Commun. 392, 214 (2017)
CrossRef ADS Google scholar
[61]
L. Wen, Q. Sun, Y. Chen, D.-S. Wang, J. Hu, H. Chen, W.-M. Liu, G. Juzeliūnas, B. A. Malomed, and A.-C. Ji, Motion of solitons in one-dimensional spin-orbit-coupled Bose–Einstein condensates, Phys. Rev. A 94, 061602(R) (2016)
[62]
Y. Li and J. Xue, Stationary and moving solitons in spin-orbit-coupled spin-1 Bose–Einstein condensates, Front. Phys. 13(2), 130307 (2018)
CrossRef ADS Google scholar
[63]
G. Gligori, A. Maluckov, Lj. Hadzievski, S. Flach, and B. A. Malomed, Nonlinear localized flatband modes with spin-orbit coupling, Phys. Rev. B 94(14), 144302 (2016)
CrossRef ADS Google scholar
[64]
Y. V. Kartashov and V. V. Konotop, Solitons in Bose– Einstein condensates with helicoidal spin-orbit coupling, Phys. Rev. Lett. 118(19), 190401 (2017)
CrossRef ADS Google scholar
[65]
Y. Li, Y. Liu, Z. Fan, W. Pang, S. Fu, and B. A. Malomed, Two-dimensional dipolar gap solitons in free space with spin-orbit coupling, Phys. Rev. A 95(6), 063613 (2017)
CrossRef ADS Google scholar
[66]
H. Sakaguchi and B. A. Malomed, One- and twodimensional gap solitons in spin-orbit-coupled systems with Zeeman splitting, Phys. Rev. A 97(1), 013607 (2018)
CrossRef ADS Google scholar
[67]
J. Dias, M. Figueira, and V. V. Konotop, Coupled nonlinear Schrödinger equations with a gauge potential: Existence and blowup, Stud. Appl. Math. 136(3), 241 (2016)
CrossRef ADS Google scholar
[68]
Sh. Mardonov, E. Ya. Sherman, J. Muga, H. W. Wang, Y. Ban, and X. Chen, Collapse of spin-orbit-coupled Bose–Einstein condensates, Phys. Rev. A 91(4), 043604 (2015)
CrossRef ADS Google scholar
[69]
H. Sakaguchi, B. Li, and B. A. Malomed, Creation of two-dimensional composite solitons in spin-orbitcoupled selfattractive Bose–Einstein condensates in free space, Phys. Rev. E 89(3), 032920 (2014)
CrossRef ADS Google scholar
[70]
H. Sakaguchi, E. Ya. Sherman, and B. A. Malomed, Vortex solitons in two-dimensional spin-orbit coupled Bose–Einstein condensates: Effects of the Rashba– Dresselhaus coupling and the Zeeman splitting, Phys. Rev. E 94(3), 032202 (2016)
CrossRef ADS Google scholar
[71]
G. Chen, Y. Liu, and H. Wang, Mixed-mode solitons in quadrupolar BECs with spin-orbit coupling, Commun. Nonlinear Sci. Numer. Simul. 48, 318 (2017)
CrossRef ADS Google scholar
[72]
Y. V. Kartashov, B. A. Malomed, V. V. Konotop, V. E. Lobanov, and L. Torner, Stabilization of spatiotemporal solitons in Kerr media by dispersive coupling, Opt. Lett. 40(6), 1045 (2015)
CrossRef ADS Google scholar
[73]
C. E. Bardyn, T. Karzig, G. Refael, and T. C. H. Liew, Topological polaritons and excitons in garden-variety systems, Phys. Rev. B 91(16), 161413 (2015)
CrossRef ADS Google scholar
[74]
A. V. Nalitov, D. D. Solnyshkov, and G. Malpuech, Polariton Z topological insulator, Phys. Rev. Lett. 114(11), 116401 (2015)
CrossRef ADS Google scholar
[75]
Y. V. Kartashov and D. V. Skryabin, Two-dimensional lattice solitons in polariton condensates with spin-orbit coupling, Opt. Lett. 41(21), 5043 (2016)
CrossRef ADS Google scholar
[76]
H. Sakaguchi, B. A. Malomed, and D. V. Skryabin, Spin-orbit coupling and nonlinear modes of the polariton condensate in a harmonic trap, New J. Phys. 19(8), 085003 (2017)
CrossRef ADS Google scholar
[77]
Y. C. Zhang, Z. W. Zhou, B. A. Malomed, and H. Pu, Stable solitons in three dimensional free space without the ground state: Self-trapped Bose–Einstein condensates with spin-orbit coupling, Phys. Rev. Lett. 115(25), 253902 (2015)
CrossRef ADS Google scholar
[78]
Y. Xu, Y. Zhang, and C. Zhang, Bright solitons in a twodimensional spin-orbit-coupled dipolar Bose–Einstein condensate, Phys. Rev. A 92(1), 013633 (2015)
CrossRef ADS Google scholar
[79]
X. Jiang, Z. Fan, Z. Chen, W. Pang, Y. Li, and B. A. Malomed, Two-dimensional solitons in dipolar Bose– Einstein condensates with spin-orbit coupling, Phys. Rev. A 93(2), 023633 (2016)
CrossRef ADS Google scholar
[80]
B. Liao, S. Li, C. Huang, Z. Luo, W. Pang, H. Tan, B. A. Malomed, and Y. Li, Anisotropic semivortices in dipolar spinor condensates controlled by Zeeman splitting, Phys. Rev. A 96(4), 043613 (2017)
CrossRef ADS Google scholar
[81]
Y. A. Bychkov and E. I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C: Solid State Phys. 17(33), 6039 (1984)
CrossRef ADS Google scholar
[82]
E. I. Rashba and E. Y. Sherman, Spin orbital band splitting in symmetric quantum wells, Phys. Lett. A 129(3), 175 (1988)
CrossRef ADS Google scholar
[83]
H. Sakaguchi and B. A. Malomed, Solitons in combined linear and nonlinear lattice potentials, Phys. Rev. A 81(1), 013624 (2010)
CrossRef ADS Google scholar
[84]
D. Kaup and B. Malomed, Soliton trapping and daughter waves in the Manakov model, Phys. Rev. A 48(1), 599 (1993)
CrossRef ADS Google scholar
[85]
Y. Li, Z. Luo, Y. Liu, Z. Chen, C. Huang, S. Fu, H. Tan, and B. A. Malomed, Two-dimensional solitons and quantum droplets supported by competing self- and cross-interactions in spin-orbit-coupled condensates, New J. Phys. 19(11), 113043 (2017)
CrossRef ADS Google scholar
[86]
C. Huang, Y. Ye, S. Liu, H. He, W. Pang, B. A. Malomed, and Y. Li, Excited states of two-dimensional solitons supported by spin-orbit coupling and field-induced dipole-dipole repulsion, Phys. Rev. A 97(1), 013636 (2018)
CrossRef ADS Google scholar
[87]
A. C. White, Y. Zhang, and T. Busch, Odd-petalnumber states and persistent flows in spin-orbit-coupled Bose–Einstein condensates, Phys. Rev. A 95, 041604(R) (2017)
[88]
X. Zhang, M. Kato, W. Han, S. Zhang, and H. Saito, Spin-orbit-coupled Bose–Einstein condensates held under a toroidal trap, Phys. Rev. A 95, 033620 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(5127 KB)

Accesses

Citations

Detail

Sections
Recommended

/