Discrete Boltzmann model for implosion- and explosion-related compressible flow with spherical symmetry

Ai-Guo Xu, Guang-Cai Zhang, Yu-Dong Zhang, Pei Wang, Yang-Jun Ying

PDF(6562 KB)
PDF(6562 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 135102. DOI: 10.1007/s11467-018-0777-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Discrete Boltzmann model for implosion- and explosion-related compressible flow with spherical symmetry

Author information +
History +

Abstract

To kinetically model implosion- and explosion-related phenomena, we present a theoretical framework for constructing a discrete Boltzmann model (DBM) with spherical symmetry in spherical coordinates. To achieve this goal, a key technique is to use localCartesian coordinates to describe the particle velocity in the kinetic model. Therefore, geometric effects, such as divergence and convergence, are described as a “force term”. To better access the nonequilibrium behavior, even though the corresponding hydrodynamic model is one-dimensional, the DBM uses a discrete velocity model (DVM) with three dimensions. A new scheme is introduced so that the DBM can use the same DVM regardless of whether or not there are extra degrees of freedom. As an example, a DVM with 26 velocities is formulated to construct the DBM at the Navier–Stokes level. Via the DBM, one can study simultaneously the hydrodynamic and thermodynamic nonequilibrium behaviors in implosion and explosion processes that are not very close to the spherical center. The extension of the current model to a multiple-relaxation-time version is straightforward.

Keywords

discrete Boltzmann model / compressible flows / spherical symmetry / geometric effects / thermodynamic nonequilibrium

Cite this article

Download citation ▾
Ai-Guo Xu, Guang-Cai Zhang, Yu-Dong Zhang, Pei Wang, Yang-Jun Ying. Discrete Boltzmann model for implosion- and explosion-related compressible flow with spherical symmetry. Front. Phys., 2018, 13(5): 135102 https://doi.org/10.1007/s11467-018-0777-z

References

[1]
J. Buckmaster, T. L. Jackson, and A. Kumar, Combustion in High-Speed Flows, Springer Netherlands, 1994
CrossRef ADS Google scholar
[2]
L. F. Wang, W. H. Ye, X. T. He, J. F. Wu, Z. F. Fan, C. Xue, H. Y. Guo, W. Y. Miao, Y. T. Yuan, J. Q. Dong, G. Jia, J. Zhang, Y. J. Li, J. Liu, M. Wang, Y. K. Ding, and W. Y. Zhang, Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions, Sci. China Phys. Mech. Astron. 60(5), 055201 (2017)
CrossRef ADS Google scholar
[3]
A. G. Xu, G. C. Zhang, Y. J. Ying, and C. Wang, Complex fields in heterogeneous materials under shock: modeling, simulation and analysis, Sci. China Phys. Mech. Astron. 59(5), 650501 (2016)
CrossRef ADS Google scholar
[4]
Z. H. Li and H. X. Zhang, Study on gas kinetic unified algorithm for flows from rarefied transition to continuum, J. Comput. Phys. 193(2), 708 (2004)
CrossRef ADS Google scholar
[5]
Z. H. Li, A. P. Peng, H. X. Zhang, and J. Y. Yang, Rarefied gas flow simulations using high-order gaskinetic unified algorithms for Boltzmann model equations, Prog. Aerosp. Sci. 74, 81 (2015)
CrossRef ADS Google scholar
[6]
A. P. Peng, Z. H. Li, J. L. Wu, X. Y. Jiang, Validation and analysis of gas-kinetic unified algorithm for solving Boltzmann model equation with vibrational energy excitation, Acta Physica Sinica 66(20), 204703 (2017)
[7]
Z. H. Li, A. P. Peng, F. Fang, S. X. Li, and S. Y. Zhang, Gas-kinetic unified algorithm for hypersonic aerothermodynamics covering various flow regimes solving Boltzmann model equation, Acta Physica Sinica 64(22), 204703 (2015)
[8]
Z. Li, X. Jiang, J. Wu, A. Peng, Gas-kinetic unified algorithm for Boltzmann model equation in rotational nonequilibrium and its application to the whole range flow regimes, Chin. J. Theor. Appl. Mech. 46(3), 336 (2014)
[9]
W. Lei, J. M. Reese, and Y. Zhang, Solving the Boltzmann equation deterministically by the fast spectral method: Application to gas microflows, J. Fluid Mech. 746(746), 53 (2014)
[10]
L. Wu, J. Zhang, J. M. Reese, and Y. Zhang, A fast spectral method for the Boltzmann equation for monatomic gas mixtures, J. Comput. Phys. 298(C), 602 (2015)
CrossRef ADS Google scholar
[11]
J. Li, C. Zhong, Y. Wang, and C. Zhuo, Implementation of dual time-stepping strategy of the gas-kinetic scheme for unsteady flow simulations, Phys. Rev. E 95(5), 053307 (2017)
CrossRef ADS Google scholar
[12]
Y. Zhu, C. Zhong, and K. Xu, Implicit unified gaskinetic scheme for steady state solutions in all flow regimes, J. Comput. Phys. 315, 16 (2016)
CrossRef ADS Google scholar
[13]
G. H. Tang, Y. H. Zhang, X. J. Gu, and D. R. Emerson, Lattice Boltzmann modelling Knudsen layer effect in non-equilibrium flows, EPL 83(4), 40008 (2008)
CrossRef ADS Google scholar
[14]
G. H. Tang, Y. H. Zhang, and D. R. Emerson, Lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E 77(4), 046701 (2008)
CrossRef ADS Google scholar
[15]
G. H. Tang, X. J. Gu, R. W. Barber, D. R. Emerson, and Y. H. Zhang, Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow, Phys. Rev. E 78(2), 026706 (2008)
CrossRef ADS Google scholar
[16]
J. Meng, Y. Zhang, Kinetic diffuse boundary condition for high-order lattice Boltzmann model with streamingcollision mechanism, J. Comput. Phys. 258, 601 (2014)
CrossRef ADS Google scholar
[17]
J. Meng and Y. Zhang, Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E 83(3 Pt 2), 036704 (2011)
CrossRef ADS Google scholar
[18]
J. Meng, Y. Zhang, and X. Shan, Multiscale lattice Boltzmann approach to modeling gas flows, Phys. Rev. E 83(4 Pt 2), 046701 (2010)
[19]
J. P. Meng, N. Dongari, J. M. Reese, and Y. Zhang, A kinetic switching criterion for hybrid modelling of multiscale gas flows, J. Phys. Confer. Ser. 362(1), 12006 (2012)
CrossRef ADS Google scholar
[20]
J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J. Fluid Mech. 718(3), 347 (2013)
CrossRef ADS Google scholar
[21]
K. Xu and J. C. Huang, A Unified Gas-Kinetic Scheme for Continuum and Rarefied Flows, Academic Press Professional, Inc., 2010
[22]
K. Xu and J. C. Huang, An improved unified gas-kinetic scheme and the study of shock structures, IMA J. Appl. Math. 76(5), 698 (2011)
CrossRef ADS Google scholar
[23]
J. C. Huang, K. Xu, and P. Yu, A unified gas-kinetic scheme for continuum and rarefied flows ii: multidimensional cases, Commun. Comput. Phys. 12(03), 662 (2012)
CrossRef ADS Google scholar
[24]
A. Xu, G. Zhang, and Y. Zhang, Discrete Boltzmann modeling of compressible flows, Chapter 2, in: Kinetic Theory, edited by G. Z. Kyzas and A. C. Mitropoulos, Croatia: InTech, 2018
CrossRef ADS Google scholar
[25]
A. G. Xu, G. C. Zhang, and Y. J. Ying, Progress of discrete Boltzmann modeling and simulation of combustion system, Acta Physica Sinica 64 64(18), 184701 (2015)
[26]
C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice Boltzmann modeling of compressible flows, Phys. Rev. E 89(1), 013307 (2014)
CrossRef ADS Google scholar
[27]
A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxationtime lattice Boltzmann kinetic model for combustion, Phys. Rev. E 91(4), 043306 (2015)
CrossRef ADS Google scholar
[28]
Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11(26), 5336 (2015)
CrossRef ADS Google scholar
[29]
H. Lai, A. Xu, G. Zhang, Y. Gan, Y. Ying, and S. Succi, Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows, Phys. Rev. E 94(2), 023106 (2016)
CrossRef ADS Google scholar
[30]
C. Lin, A. Xu, G. Zhang, and Y. Li, Doubledistribution- function discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)
CrossRef ADS Google scholar
[31]
Y. Zhang, A. Xu, G. Zhang, C. Zhu, and C. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame 173, 483 (2016)
CrossRef ADS Google scholar
[32]
Y. Zhang, A. Xu, G. Zhang, and Z. Chen, Discrete Boltzmann method with Maxwell-type boundary condition for slip flow, Commum. Theor. Phys. 69(1), 77 (2018)
CrossRef ADS Google scholar
[33]
Y. Gan, A. Xu, G. Zhang, and H. Lai, Threedimensional discrete Boltzmann models for compressible flows in and out of equilibrium, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 232(3), 477 (2018)
CrossRef ADS Google scholar
[34]
C. Lin, A. Xu, G. Zhang, K. Luo, and Y. Li, Discrete Boltzmann modeling of Rayleigh-Taylor instability in bi-component compressible flows, Phys. Rev. E 96(5), 053305 (2017)
CrossRef ADS Google scholar
[35]
C. Lin, K. Luo, L. Fei, and S. Succi, A multi-component discrete Boltzmann model for nonequilibrium reactive flows, Sci. Rep. 7(1), 14580 (2017)
CrossRef ADS Google scholar
[36]
Y. Zhang, A. Xu, G. Zhang, Z. Chen, and P. Wang, Discrete ellipsoidal statistical BGK model and Burnett equations, Front. Phys. 13(3), 135101 (2018)
CrossRef ADS Google scholar
[37]
M. La Rocca, A. Montessori, P. Prestininzi, and S. Succi, A multispeed discrete Boltzmann model for transcritical 2d shallow water flows, J. Comput. Phys. 284(C), 117 (2015)
CrossRef ADS Google scholar
[38]
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, New York: Oxford University Press, 2001
[39]
S. Toppaladoddi, S. Succi, and J. S. Wettlaufer, Roughness as a route to the ultimate regime of thermal convection, Phys. Rev. Lett. 118(7), 074503 (2017)
CrossRef ADS Google scholar
[40]
X. Shan, X. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: A way beyond the Navier- Stokes equation, J. Fluid Mech. 550, 413 (2006)
CrossRef ADS Google scholar
[41]
J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J. Fluid Mech. 718(3), 347 (2013)
CrossRef ADS Google scholar
[42]
D. Sun, M. Zhu, S. Pan, and D. Raabe, Lattice Boltzmann modeling of dendritic growth in a forced melt convection, Acta Mater. 57(6), 1755 (2009)
CrossRef ADS Google scholar
[43]
Y. Wang, C. Shu, H. B. Huang, and C. J. Teo, Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio, J. Comput. Phys. 280(C), 404 (2015)
CrossRef ADS Google scholar
[44]
Z. Chai, C. Huang, B. Shi, and Z. Guo, A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media, Int. J. Heat Mass Transfer 98, 687 (2016)
CrossRef ADS Google scholar
[45]
H. Liu, L. Wu, Y. Ba, and G. Xi, A lattice Boltzmann method for axisymmetric thermocapillary flows, International Journal of Heat & Mass Transfer 104, 337 (2017)
CrossRef ADS Google scholar
[46]
L. Chen, L. Zhang, Q. Kang, H. S. Viswanathan, J. Yao, and W. Tao, Nanoscale simulation of shale transport properties using the lattice Boltzmann method: Permeability 445 and diffusivity, Sci. Rep. 5(1), 8089 (2015)
CrossRef ADS Google scholar
[47]
C. Zhuo, C. Zhong, and J. Cao, Filter-matrix lattice Boltzmann model for incompressible thermal flows, Phys. Rev. E 85(4), 046703 (2012)
CrossRef ADS Google scholar
[48]
J. Meng and Y. Zhang, Diffuse reflection boundary condition for high-order lattice Boltzmann models with streaming-collision mechanism, J. Comput. Phys. 258(C), 601 (2014)
CrossRef ADS Google scholar
[49]
L. Wang, G. Zhou, X. Wang, Q. Xiong, and W. Ge, Direct numerical simulation of particle-fluid systems by combining time-driven hard-sphere model and lattice Boltzmann method, Particuology 8(4), 379 (2010)
CrossRef ADS Google scholar
[50]
A. Doostmohammadi, T. N. Shendruk, K. Thijssen, and J. M. Yeomans, Onset of meso-scale turbulence in active nematics, Nat. Commun. 8, 15326 (2017)
CrossRef ADS Google scholar
[51]
A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. J. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)
CrossRef ADS Google scholar
[52]
M. Watari and M. Tsutahara, Possibility of constructing a multispeed Bhatnagar–Gross–Krook thermal model of the lattice Boltzmann method, Phys. Rev. E 70(1), 016703 (2004)
CrossRef ADS Google scholar
[53]
H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. T. He, Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)
CrossRef ADS Google scholar
[54]
H. Liu, Y. Zhang, W. Kang, P. Zhang, H. Duan, and X. T. He, Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons, Phys. Rev. E 95, 023201 (2017)
CrossRef ADS Google scholar
[55]
H. Liu, W. Kang, H. Duan, P. Zhang, and X. He, Recent progresses on numerical investigations of microscopic structure of strong shock waves in fluid, Scientia Sinica Physica Mechanica and Astronomica 47(7), 070003 (2017)
CrossRef ADS Google scholar
[56]
F. Chen, A. G. Xu, G. C. Zhang, and Y. L. Wang, Two-dimensional MRT LB model for compressible and incompressible flows, Front. Phys. 9(2), 246 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(6562 KB)

Accesses

Citations

Detail

Sections
Recommended

/