Cluster synchronization in complex network of coupled chaotic circuits: An experimental study
Ben Cao, Ya-Feng Wang, Liang Wang, Yi-Zhen Yu, Xin-Gang Wang
Cluster synchronization in complex network of coupled chaotic circuits: An experimental study
By a small-size complex network of coupled chaotic Hindmarsh-Rose circuits, we study experimentally the stability of network synchronization to the removal of shortcut links. It is shown that the removal of a single shortcut link may destroy either completely or partially the network synchronization. Interestingly, when the network is partially desynchronized, it is found that the oscillators can be organized into different groups, with oscillators within each group being highly synchronized but are not for oscillators from different groups, showing the intriguing phenomenon of cluster synchronization. The experimental results are analyzed by the method of eigenvalue analysis, which implies that the formation of cluster synchronization is crucially dependent on the network symmetries. Our study demonstrates the observability of cluster synchronization in realistic systems, and indicates the feasibility of controlling network synchronization by adjusting network topology.
chaos synchronization / pattern formation / neuronal circuits
[1] |
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Berlin: Springer, 1984
CrossRef
ADS
Google scholar
|
[2] |
A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science, Cambridge: Cambridge University Press, 2001
CrossRef
ADS
Google scholar
|
[3] |
S. Strogatz, Sync: The Emerging Science of Spontaneous Order, New York: Hyperion, 2003
|
[4] |
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424(4–5), 175 (2006)
CrossRef
ADS
Google scholar
|
[5] |
A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. S. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
CrossRef
ADS
Google scholar
|
[6] |
L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64(8), 821 (1990)
CrossRef
ADS
Google scholar
|
[7] |
L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett. 80(10), 2109 (1998)
CrossRef
ADS
Google scholar
|
[8] |
G. Hu, J. Z. Yang, and W. Liu, Instability and controllability of linearly coupled oscillators: Eigenvalue analysis, Phys. Rev. E 58(4), 4440 (1998)
CrossRef
ADS
Google scholar
|
[9] |
L. Huang, Q. Chen, Y. C. Lai, and L. M. Pecora, Generic behavior of master-stability functions in coupled nonlinear dynamical systems, Phys. Rev. E 80(3), 036204 (2009)
CrossRef
ADS
Google scholar
|
[10] |
L. M. Pecora, Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems, Phys. Rev. E 58(1), 347 (1998)
CrossRef
ADS
Google scholar
|
[11] |
D. Hansel, G. Mato, and C. Meunier, Clustering and slow switching in globally coupled phase oscillators, Phys. Rev. E 48(5), 3470 (1993)
CrossRef
ADS
Google scholar
|
[12] |
V. N. Belykh and E. Mosekilde, One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures, Phys. Rev. E 54(4), 3196 (1996)
CrossRef
ADS
Google scholar
|
[13] |
M. Hasler, Yu. Maistrenko, and O. Popovych, Simple example of partial synchronizaiton of chaotic systems, Phys. Rev. E 58(5), 6843 (1998)
CrossRef
ADS
Google scholar
|
[14] |
Y. Zhang, G. Hu, H. A. Cerdeira, S. Chen, T. Braun, and Y. Yao, Partial synchronization and spontaneous spatial ordering in coupled chaotic systems, Phys. Rev. E 63(2), 026211 (2001)
CrossRef
ADS
Google scholar
|
[15] |
A. Pikovsky, O. Popovych, and Yu. Maistrenko, Resolving clusters in chaotic ensembles of globally coupled identical oscillators, Phys. Rev. Lett. 87(4), 044102 (2001)
CrossRef
ADS
Google scholar
|
[16] |
I. A. Heisler, T. Braun, Y. Zhang, G. Hu, and H. A. Cerdeira, Experimental investigation of partial synchronization in coupled chaotic oscillators, Chaos 13(1), 185 (2003)
CrossRef
ADS
Google scholar
|
[17] |
B. Ao and Z. G. Zheng, Partial synchronization on complex networks, Europhys. Lett. 74(2), 229 (2006)
CrossRef
ADS
Google scholar
|
[18] |
C. S. Zhou and J. Kurths, Hierarchical synchronization in complex networks with heterogeneous degrees, Chaos 16(1), 015104 (2006)
CrossRef
ADS
Google scholar
|
[19] |
J. Zhang, Y. Yu, and X. G. Wang, Synchronization of coupled metronomes on two layers, Front. Phys. 12(6), 120508 (2017)
CrossRef
ADS
Google scholar
|
[20] |
M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Springer-Verlag, 1985
CrossRef
ADS
Google scholar
|
[21] |
E. Basar, Brain Function and Oscillation, New York: Springer, 1998
CrossRef
ADS
Google scholar
|
[22] |
D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small world networks, Nature 393(6684), 440 (1998)
CrossRef
ADS
Google scholar
|
[23] |
A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286(5439), 509 (1999)
CrossRef
ADS
Google scholar
|
[24] |
P. M. Gade, Synchronization in coupled map lattices with random nonlocal connectivity, Phys. Rev. E 54(1), 64 (1996)
CrossRef
ADS
Google scholar
|
[25] |
P. M. Gade and C. K. Hu, Synchronous chaos in coupled map lattices with small-world interactions, Phys. Rev. E 62(5), 6409 (2000)
CrossRef
ADS
Google scholar
|
[26] |
M. Barahona and L. M. Pecora, Synchronization in Small-World Systems, Phys. Rev. Lett. 89(5), 054101 (2002)
CrossRef
ADS
Google scholar
|
[27] |
T. Nishikawa, A. E. Motter, Y. C. Lai, and F. C. Hoppensteadt, Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Phys. Rev. Lett. 91(1), 014101 (2003)
CrossRef
ADS
Google scholar
|
[28] |
A. E. Motter, C. Zhou, and J. Kurths, Weighted networks are more synchronizable: How and why, AIP Conf. Proc. 776, 201 (2005)
CrossRef
ADS
Google scholar
|
[29] |
X. G. Wang, Y. C. Lai, and C. H. Lai, Enhancing synchronization based on complex gradient networks, Phys. Rev. E 75(5), 056205 (2007)
CrossRef
ADS
Google scholar
|
[30] |
C. Fu, H. Zhang, M. Zhan, and X. G. Wang, Synchronous patterns in complex systems? Phys. Rev. E 85(6), 066208 (2012)
CrossRef
ADS
Google scholar
|
[31] |
Z. He, X. G. Wang, G. Y. Zhang, and M. Zhan, Control for a synchronization-desynchronization switch, Phys. Rev. E 90(1), 012909 (2014)
CrossRef
ADS
Google scholar
|
[32] |
W. Yang, W. Lin, X. G. Wang, and L. Huang, Synchronization of networked chaotic oscillators under external periodic driving, Phys. Rev. E 91(3), 032912 (2015)
CrossRef
ADS
Google scholar
|
[33] |
T. Nishikawa and A. E. Motter, Symmetric states requiring system asymmetry? Phys. Rev. Lett. 117(11), 114101 (2016)
CrossRef
ADS
Google scholar
|
[34] |
K. Park, L. Huang, and Y. C. Lai, Desynchronization waves in small-world networks, Phys. Rev. E 75(2), 026211 (2007)
CrossRef
ADS
Google scholar
|
[35] |
F. Sorrentino and E. Ott, Network synchronization of groups, Phys. Rev. E 76(5), 056114 (2007)
CrossRef
ADS
Google scholar
|
[36] |
V. N. Belykh, G. V. Osipov, V. S. Petrov, J. A. K. Suykens, and J. Vandewalle, Cluster synchronization in oscillatory networks, Chaos 18(3), 037106 (2008)
CrossRef
ADS
Google scholar
|
[37] |
G. Russo and J. J. E. Slotine, Symmetries, stability, and control in nonlinear systems and networks,Phys. Rev. E 84(4), 041929 (2011)
CrossRef
ADS
Google scholar
|
[38] |
T. Dahms, J. Lehnert, and E. Schöll, Cluster and group synchronization in delay-coupled networks, Phys. Rev. E 86(1), 016202 (2012)
CrossRef
ADS
Google scholar
|
[39] |
V. Nicosia, M. Valencia, M. Chavez, A. Diaz-Guilera, and V. Latora, Remote synchronization reveals network symmetries and functional modules,Phys. Rev. Lett. 110(17), 174102 (2013)
CrossRef
ADS
Google scholar
|
[40] |
C. Fu, Z. Deng, L. Huang, and X. G. Wang, Topological control of synchronous patterns in systems of networked chaotic oscillators, Phys. Rev. E 87(3), 032909 (2013)
CrossRef
ADS
Google scholar
|
[41] |
C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll, Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators,
CrossRef
ADS
Google scholar
|
[42] |
C. Fu, W. Lin, L. Huang, and X. G. Wang, Synchronization transition in networked chaotic oscillators: The viewpoint from partial synchronization, Phys. Rev. E 89(5), 052908 (2014)
CrossRef
ADS
Google scholar
|
[43] |
L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nat. Commun. 5, 4079 (2014)
CrossRef
ADS
Google scholar
|
[44] |
F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Complete characterization of stability of cluster synchronization in complex dynamical networks, Sci. Adv. 2(4), e1501737 (2016)
CrossRef
ADS
Google scholar
|
[45] |
D. Hart, K. Bansal, T. E. Murphy, and R. Roy, Experimental observation of chimera and cluster states in a minimal globally coupled network, Chaos 26(9), 094801 (2016)
CrossRef
ADS
Google scholar
|
[46] |
T. Nishikawa and A. E. Motter, Network-complement transitions, symmetries, and cluster synchronization, Chaos 26(9), 094818 (2016)
CrossRef
ADS
Google scholar
|
[47] |
M. T. Schaub, N. O’Clery, Y. N. Billeh, J. C. Delvenne, R. Lambiotte, and M. Barahona, Graph partitions and cluster synchronization in networks of oscillators, Chaos 26(9), 094821 (2016)
CrossRef
ADS
Google scholar
|
[48] |
F. Sorrentino and L. Pecora, Approximate cluster synchronization in networks with symmetries and parameter mismatches, Chaos 26(9), 094823 (2016)
CrossRef
ADS
Google scholar
|
[49] |
Y. S. Cho, T. Nishikawa, and A. E. Motter, Stable chimeras and independently synchronizable clusters, Phys. Rev. Lett. 119(8), 084101 (2017)
CrossRef
ADS
Google scholar
|
[50] |
W. Stein, http://www.sagemath.org/sage/ and http:// sage.scipy.org/ for SAGE: Software for Algebra and Geometry Experimentation, 2013
|
[51] |
W. Lin, H. Fan, Y. Wang, H. Ying, and X. G. Wang, Controlling synchronous patterns in complex networks, Phys. Rev. E 93(4), 042209 (2016)
CrossRef
ADS
Google scholar
|
[52] |
W. Lin, H. Li, H. Ying, and X. G. Wang, Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators, Phys. Rev. E 94(6), 062303 (2016)
CrossRef
ADS
Google scholar
|
[53] |
J. Sun, E. M. Bollt, and T. Nishikawa, Master stability functions for coupled nearly identical dynamical systems, EPL 85(6), 60011 (2009)
CrossRef
ADS
Google scholar
|
[54] |
J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. Lond. B Biol. Sci. 221(1222), 87 (1984)
CrossRef
ADS
Google scholar
|
[55] |
G. Ren, J. Tang, J. Ma, and Y. Xu, Detection of noise effect on coupled neuronal circuits, Commun. Nonlinear Sci. Numer. Simul. 29(1–3), 170 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |