Please wait a minute...

Frontiers of Physics

Front. Phys.    2018, Vol. 13 Issue (5) : 130505     https://doi.org/10.1007/s11467-018-0775-1
RESEARCH ARTICLE |
Cluster synchronization in complex network of coupled chaotic circuits: An experimental study
Ben Cao1,2, Ya-Feng Wang1, Liang Wang1, Yi-Zhen Yu1, Xin-Gang Wang1()
1. School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China
2. School of Physical Education, Shaanxi Normal University, Xi’an 710062, China
Download: PDF(3014 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By a small-size complex network of coupled chaotic Hindmarsh-Rose circuits, we study experimentally the stability of network synchronization to the removal of shortcut links. It is shown that the removal of a single shortcut link may destroy either completely or partially the network synchronization. Interestingly, when the network is partially desynchronized, it is found that the oscillators can be organized into different groups, with oscillators within each group being highly synchronized but are not for oscillators from different groups, showing the intriguing phenomenon of cluster synchronization. The experimental results are analyzed by the method of eigenvalue analysis, which implies that the formation of cluster synchronization is crucially dependent on the network symmetries. Our study demonstrates the observability of cluster synchronization in realistic systems, and indicates the feasibility of controlling network synchronization by adjusting network topology.

Keywords chaos synchronization      pattern formation      neuronal circuits     
Corresponding Authors: Xin-Gang Wang   
Issue Date: 24 April 2018
 Cite this article:   
Ben Cao,Ya-Feng Wang,Liang Wang, et al. Cluster synchronization in complex network of coupled chaotic circuits: An experimental study[J]. Front. Phys. , 2018, 13(5): 130505.
 URL:  
http://journal.hep.com.cn/fop/EN/10.1007/s11467-018-0775-1
http://journal.hep.com.cn/fop/EN/Y2018/V13/I5/130505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ben Cao
Ya-Feng Wang
Liang Wang
Yi-Zhen Yu
Xin-Gang Wang
1 Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Berlin: Springer, 1984
https://doi.org/10.1007/978-3-642-69689-3
2 A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science, Cambridge: Cambridge University Press, 2001
https://doi.org/10.1017/CBO9780511755743
3 S. Strogatz, Sync: The Emerging Science of Spontaneous Order, New York: Hyperion, 2003
4 S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424(4–5), 175 (2006)
https://doi.org/10.1016/j.physrep.2005.10.009
5 A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. S. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
https://doi.org/10.1016/j.physrep.2008.09.002
6 L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64(8), 821 (1990)
https://doi.org/10.1103/PhysRevLett.64.821
7 L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett. 80(10), 2109 (1998)
https://doi.org/10.1103/PhysRevLett.80.2109
8 G. Hu, J. Z. Yang, and W. Liu, Instability and controllability of linearly coupled oscillators: Eigenvalue analysis, Phys. Rev. E 58(4), 4440 (1998)
https://doi.org/10.1103/PhysRevE.58.4440
9 L. Huang, Q. Chen, Y. C. Lai, and L. M. Pecora, Generic behavior of master-stability functions in coupled nonlinear dynamical systems, Phys. Rev. E 80(3), 036204 (2009)
https://doi.org/10.1103/PhysRevE.80.036204
10 L. M. Pecora, Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems, Phys. Rev. E 58(1), 347 (1998)
https://doi.org/10.1103/PhysRevE.58.347
11 D. Hansel, G. Mato, and C. Meunier, Clustering and slow switching in globally coupled phase oscillators, Phys. Rev. E 48(5), 3470 (1993)
https://doi.org/10.1103/PhysRevE.48.3470
12 V. N. Belykh and E. Mosekilde, One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures, Phys. Rev. E 54(4), 3196 (1996)
https://doi.org/10.1103/PhysRevE.54.3196
13 M. Hasler, Yu. Maistrenko, and O. Popovych, Simple example of partial synchronizaiton of chaotic systems, Phys. Rev. E 58(5), 6843 (1998)
https://doi.org/10.1103/PhysRevE.58.6843
14 Y. Zhang, G. Hu, H. A. Cerdeira, S. Chen, T. Braun, and Y. Yao, Partial synchronization and spontaneous spatial ordering in coupled chaotic systems, Phys. Rev. E 63(2), 026211 (2001)
https://doi.org/10.1103/PhysRevE.63.026211
15 A. Pikovsky, O. Popovych, and Yu. Maistrenko, Resolving clusters in chaotic ensembles of globally coupled identical oscillators, Phys. Rev. Lett. 87(4), 044102 (2001)
https://doi.org/10.1103/PhysRevLett.87.044102
16 I. A. Heisler, T. Braun, Y. Zhang, G. Hu, and H. A. Cerdeira, Experimental investigation of partial synchronization in coupled chaotic oscillators, Chaos 13(1), 185 (2003)
https://doi.org/10.1063/1.1505811
17 B. Ao and Z. G. Zheng, Partial synchronization on complex networks, Europhys. Lett. 74(2), 229 (2006)
https://doi.org/10.1209/epl/i2005-10533-0
18 C. S. Zhou and J. Kurths, Hierarchical synchronization in complex networks with heterogeneous degrees, Chaos 16(1), 015104 (2006)
https://doi.org/10.1063/1.2150381
19 J. Zhang, Y. Yu, and X. G. Wang, Synchronization of coupled metronomes on two layers, Front. Phys. 12(6), 120508 (2017)
https://doi.org/10.1007/s11467-017-0675-9
20 M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Springer-Verlag, 1985
https://doi.org/10.1007/978-1-4612-5034-0
21 E. Basar, Brain Function and Oscillation, New York: Springer, 1998
https://doi.org/10.1007/978-3-642-72192-2
22 D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small world networks, Nature 393(6684), 440 (1998)
https://doi.org/10.1038/30918
23 A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286(5439), 509 (1999)
https://doi.org/10.1126/science.286.5439.509
24 P. M. Gade, Synchronization in coupled map lattices with random nonlocal connectivity, Phys. Rev. E 54(1), 64 (1996)
https://doi.org/10.1103/PhysRevE.54.64
25 P. M. Gade and C. K. Hu, Synchronous chaos in coupled map lattices with small-world interactions, Phys. Rev. E 62(5), 6409 (2000)
https://doi.org/10.1103/PhysRevE.62.6409
26 M. Barahona and L. M. Pecora, Synchronization in Small-World Systems, Phys. Rev. Lett. 89(5), 054101 (2002)
https://doi.org/10.1103/PhysRevLett.89.054101
27 T. Nishikawa, A. E. Motter, Y. C. Lai, and F. C. Hoppensteadt, Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Phys. Rev. Lett. 91(1), 014101 (2003)
https://doi.org/10.1103/PhysRevLett.91.014101
28 A. E. Motter, C. Zhou, and J. Kurths, Weighted networks are more synchronizable: How and why, AIP Conf. Proc. 776, 201 (2005)
https://doi.org/10.1063/1.1985389
29 X. G. Wang, Y. C. Lai, and C. H. Lai, Enhancing synchronization based on complex gradient networks, Phys. Rev. E 75(5), 056205 (2007)
https://doi.org/10.1103/PhysRevE.75.056205
30 C. Fu, H. Zhang, M. Zhan, and X. G. Wang, Synchronous patterns in complex systems? Phys. Rev. E 85(6), 066208 (2012)
https://doi.org/10.1103/PhysRevE.85.066208
31 Z. He, X. G. Wang, G. Y. Zhang, and M. Zhan, Control for a synchronization-desynchronization switch, Phys. Rev. E 90(1), 012909 (2014)
https://doi.org/10.1103/PhysRevE.90.012909
32 W. Yang, W. Lin, X. G. Wang, and L. Huang, Synchronization of networked chaotic oscillators under external periodic driving, Phys. Rev. E 91(3), 032912 (2015)
https://doi.org/10.1103/PhysRevE.91.032912
33 T. Nishikawa and A. E. Motter, Symmetric states requiring system asymmetry? Phys. Rev. Lett. 117(11), 114101 (2016)
https://doi.org/10.1103/PhysRevLett.117.114101
34 K. Park, L. Huang, and Y. C. Lai, Desynchronization waves in small-world networks, Phys. Rev. E 75(2), 026211 (2007)
https://doi.org/10.1103/PhysRevE.75.026211
35 F. Sorrentino and E. Ott, Network synchronization of groups, Phys. Rev. E 76(5), 056114 (2007)
https://doi.org/10.1103/PhysRevE.76.056114
36 V. N. Belykh, G. V. Osipov, V. S. Petrov, J. A. K. Suykens, and J. Vandewalle, Cluster synchronization in oscillatory networks, Chaos 18(3), 037106 (2008)
https://doi.org/10.1063/1.2956986
37 G. Russo and J. J. E. Slotine, Symmetries, stability, and control in nonlinear systems and networks,Phys. Rev. E 84(4), 041929 (2011)
https://doi.org/10.1103/PhysRevE.84.041929
38 T. Dahms, J. Lehnert, and E. Schöll, Cluster and group synchronization in delay-coupled networks, Phys. Rev. E 86(1), 016202 (2012)
https://doi.org/10.1103/PhysRevE.86.016202
39 V. Nicosia, M. Valencia, M. Chavez, A. Diaz-Guilera, and V. Latora, Remote synchronization reveals network symmetries and functional modules,Phys. Rev. Lett. 110(17), 174102 (2013)
https://doi.org/10.1103/PhysRevLett.110.174102
40 C. Fu, Z. Deng, L. Huang, and X. G. Wang, Topological control of synchronous patterns in systems of networked chaotic oscillators, Phys. Rev. E 87(3), 032909 (2013)
https://doi.org/10.1103/PhysRevE.87.032909
41 C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll, Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators,Phys. Rev. Lett. 110(6), 064104 (2013)
https://doi.org/10.1103/PhysRevLett.110.064104
42 C. Fu, W. Lin, L. Huang, and X. G. Wang, Synchronization transition in networked chaotic oscillators: The viewpoint from partial synchronization, Phys. Rev. E 89(5), 052908 (2014)
https://doi.org/10.1103/PhysRevE.89.052908
43 L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nat. Commun. 5, 4079 (2014)
https://doi.org/10.1038/ncomms5079
44 F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Complete characterization of stability of cluster synchronization in complex dynamical networks, Sci. Adv. 2(4), e1501737 (2016)
https://doi.org/10.1126/sciadv.1501737
45 D. Hart, K. Bansal, T. E. Murphy, and R. Roy, Experimental observation of chimera and cluster states in a minimal globally coupled network, Chaos 26(9), 094801 (2016)
https://doi.org/10.1063/1.4953662
46 T. Nishikawa and A. E. Motter, Network-complement transitions, symmetries, and cluster synchronization, Chaos 26(9), 094818 (2016)
https://doi.org/10.1063/1.4960617
47 M. T. Schaub, N. O’Clery, Y. N. Billeh, J. C. Delvenne, R. Lambiotte, and M. Barahona, Graph partitions and cluster synchronization in networks of oscillators, Chaos 26(9), 094821 (2016)
https://doi.org/10.1063/1.4961065
48 F. Sorrentino and L. Pecora, Approximate cluster synchronization in networks with symmetries and parameter mismatches, Chaos 26(9), 094823 (2016)
https://doi.org/10.1063/1.4961967
49 Y. S. Cho, T. Nishikawa, and A. E. Motter, Stable chimeras and independently synchronizable clusters, Phys. Rev. Lett. 119(8), 084101 (2017)
https://doi.org/10.1103/PhysRevLett.119.084101
50 W. Stein,, 2013
51 W. Lin, H. Fan, Y. Wang, H. Ying, and X. G. Wang, Controlling synchronous patterns in complex networks, Phys. Rev. E 93(4), 042209 (2016)
https://doi.org/10.1103/PhysRevE.93.042209
52 W. Lin, H. Li, H. Ying, and X. G. Wang, Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators, Phys. Rev. E 94(6), 062303 (2016)
https://doi.org/10.1103/PhysRevE.94.062303
53 J. Sun, E. M. Bollt, and T. Nishikawa, Master stability functions for coupled nearly identical dynamical systems, EPL 85(6), 60011 (2009)
https://doi.org/10.1209/0295-5075/85/60011
54 J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. Lond. B Biol. Sci. 221(1222), 87 (1984)
https://doi.org/10.1098/rspb.1984.0024
55 G. Ren, J. Tang, J. Ma, and Y. Xu, Detection of noise effect on coupled neuronal circuits, Commun. Nonlinear Sci. Numer. Simul. 29(1–3), 170 (2015)
https://doi.org/10.1016/j.cnsns.2015.05.001
Related articles from Frontiers Journals
[1] XIAO Jing-hua, LI Hai-hong, YANG Jun-zhong, HU Gang. Chaotic Turing pattern formation in spatiotemporal systems[J]. Front. Phys. , 2006, 1(2): 204-208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed