Perfect invisibility concentrator with simplified material parameters

Meng-Yin Zhou, Lin Xu, Lu-Chan Zhang, Jiang Wu, Yan-Bo Li, Huan-Yang Chen

PDF(1313 KB)
PDF(1313 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 134101. DOI: 10.1007/s11467-018-0764-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Perfect invisibility concentrator with simplified material parameters

Author information +
History +

Abstract

We present a series of invisibility concentrators with simplified material parameters beyond transformation optics. One of them can achieve the perfect invisible effect at frequencies of Fabry–Pérot resonances, while others have very small scattering. The required materials are feasible in practice. Analytical calculations and numerical simulations confirm the functionalities of these devices.

Keywords

perfect-invisibility concentrator / simplified material parameters / Fabry–Pérot resonances / scattering cross section

Cite this article

Download citation ▾
Meng-Yin Zhou, Lin Xu, Lu-Chan Zhang, Jiang Wu, Yan-Bo Li, Huan-Yang Chen. Perfect invisibility concentrator with simplified material parameters. Front. Phys., 2018, 13(5): 134101 https://doi.org/10.1007/s11467-018-0764-4

References

[1]
U. Leonhardt, Optical conformal mapping, Science 312(5781), 1777 (2006)
CrossRef ADS Google scholar
[2]
J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)
CrossRef ADS Google scholar
[3]
E. J. Post, Formal Structure of Electromagnetics: General Covariance and Electromagnetics, Courier Corporation, 1997
[4]
U. Leonhardt and Philbin , T, Geometry and Light: The Science of Invisibility, New York: Dover Inc., 2010
[5]
U. Leonhardt and T. G. Philbin, General relativity in electrical engineering, New J. Phys. 8(10), 247 (2006)
CrossRef ADS Google scholar
[6]
H. Chen and C. Chan, Transformation media that rotate electromagnetic fields, Appl. Phys. Lett. 90(24), 241105 (2007)
CrossRef ADS Google scholar
[7]
J. Li and J. Pendry, Hiding under the carpet: A new strategy for cloaking, Phys. Rev. Lett. 101(20), 203901 (2008)
CrossRef ADS Google scholar
[8]
C. Chu, X. Zhai, C. J. Lee, P. H. Wang, Y. Duan, D. P. Tsai, B. Zhang, and Y. Luo, Phase-preserved macroscopic visible-light carpet cloaking beyond two dimensions, Laser Photonics Rev. 9(4), 399 (2015)
CrossRef ADS Google scholar
[9]
Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett. 102(9), 093901 (2009)
CrossRef ADS Google scholar
[10]
Y. Lai, J. Ng, H. Chen, D. Z. Han, J. J. Xiao, Z.Q. Zhang, and C. T. Chan, Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett. 102(25), 253902 (2009)
CrossRef ADS Google scholar
[11]
T. Y. Huang, H. C. Lee, I. W. Un, and T. J. Yen, An innovative cloak enables arbitrary multi-objects hidden with visions and movements, Appl. Phys. Lett. 101, 151901 (2012)
CrossRef ADS Google scholar
[12]
M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations, Photon. Nanostructures 6(1), 87 (2008)
CrossRef ADS Google scholar
[13]
M. M. Sadeghi, H. Nadgaran, and H. Chen, Perfect field concentrator using zero index metamaterials and perfect electric conductors, Front. Phys. 9, 90 (2014)
CrossRef ADS Google scholar
[14]
D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314(5801), 977 (2006)
CrossRef ADS Google scholar
[15]
H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, Design and experimental realization of a broadband transformation media field rotator at microwave frequencies, Phys. Rev. Lett. 102(18), 183903 (2009)
CrossRef ADS Google scholar
[16]
M. Yan, Z. Ruan, and M. Qiu, Cylindrical invisibility cloak with simplified material parameters is inherently visible, Phys. Rev. Lett. 99(23), 233901 (2007)
CrossRef ADS Google scholar
[17]
W. Yan, M. Yan, and M. Qiu, Generalized compensated bilayer structure from the transformation optics perspective, J. Opt. Soc. Am. B 26(12), B39 (2009)
CrossRef ADS Google scholar
[18]
M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, Transformation optics with Fabry-Pérot resonances, Sci. Rep. 5(1), 8680 (2015)
CrossRef ADS Google scholar
[19]
C. Navau, J. Prat-Camps, O. Romero-Isart, J. I. Cirac, and A. Sanchez, Long-distance transfer and routing of static magnetic fields, Phys. Rev. Lett. 112(25), 253901 (2014)
CrossRef ADS Google scholar
[20]
F. Sun and S. He, DC magnetic concentrator and omnidirectional cascaded cloak by using only one or two homogeneous anisotropic materials of positive permeability, Prog. Electromagnetics Res. 142, 683 (2013)
CrossRef ADS Google scholar
[21]
J. Prat-Camps, C. Navau, and A. Sanchez, Experimental realization of magnetic energy concentration and transmission at a distance by metamaterials, Appl. Phys. Lett. 105(23), 234101 (2014)
CrossRef ADS Google scholar
[22]
C. Navau, J. Prat-Camps, and A. Sanchez, Magnetic energy harvesting and concentration at a distance by transformation optics, Phys. Rev. Lett. 109(26), 263903 (2012)
CrossRef ADS Google scholar
[23]
F. Sun and S. He, Transformation inside a Null-space region and a DC magnetic funnel for achieving an enhanced magnetic flux with a large gradient, Prog. Electromagnetics Res. 146, 143 (2014)
CrossRef ADS Google scholar
[24]
H. C. van de Hulst, Light Scattering by Small Particles, Courier Corporation, 1957

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1313 KB)

Accesses

Citations

Detail

Sections
Recommended

/