Dissociation of liquid water on defective rutile TiO2 (110) surfaces using ab initio molecular dynamics simulations

Hui-Li Wang (王会丽), Zhen-Peng Hu (胡振芃), Hui Li (李晖)

PDF(26486 KB)
PDF(26486 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 138107. DOI: 10.1007/s11467-018-0763-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Dissociation of liquid water on defective rutile TiO2 (110) surfaces using ab initio molecular dynamics simulations

Author information +
History +

Abstract

In order to obtain a comprehensive understanding of both thermodynamics and kinetics of water dissociation on TiO2, the reactions between liquid water and perfect and defective rutile TiO2 (110) surfaces were investigated using ab initio molecular dynamics simulations. The results showed that the free-energy barrier (~4.4 kcal/mol) is too high for a spontaneous dissociation of water on the perfect rutile (110) surface at a low temperature. The most stable oxygen vacancy (Vo1) on the rutile (110) surface cannot promote the dissociation of water, while other unstable oxygen vacancies can significantly enhance the water dissociation rate. This is opposite to the general understanding that Vo1 defects are active sites for water dissociation. Furthermore, we reveal that water dissociation is an exothermic reaction, which demonstrates that the dissociated state of the adsorbed water is thermodynamically favorable for both perfect and defective rutile (110) surfaces. The dissociation adsorption of water can also increase the hydrophilicity of TiO2.

Keywords

ab initio molecular dynamics / rutile (110) / free energy barrier / spontaneous reaction / exothermic reaction

Cite this article

Download citation ▾
Hui-Li Wang (王会丽), Zhen-Peng Hu (胡振芃), Hui Li (李晖). Dissociation of liquid water on defective rutile TiO2 (110) surfaces using ab initio molecular dynamics simulations. Front. Phys., 2018, 13(3): 138107 https://doi.org/10.1007/s11467-018-0763-5

References

[1]
A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
CrossRef ADS Google scholar
[2]
X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science 331(6018), 746 (2011)
CrossRef ADS Google scholar
[3]
S. J. Tan, F. Hao, Y. F. Ji, Y. Wang, J. Zhao, A. D. Zhao, B. Wang, Y. Luo, J. L. Yang, and J. G. Hou, Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2 (110)-1×1 Surface, J. Am. Chem. Soc. 134(24), 9978 (2012)
CrossRef ADS Google scholar
[4]
J. H. Liang, N. Wang, Q. X. Zhang, B. F. Liu, X. B. Kong, C. C. Wei, D. K. Zhang, B. J. Yan, Y. Zhao, and X. D. Zhang, Exploring the mechanism of a pure and amorphous black-blue TiO2:H thin film as a photoanode in water splitting, Nano Energy 42, 151 (2017)
CrossRef ADS Google scholar
[5]
V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides, Cambridge: Cambridge University Press, 1994
[6]
H. J. Freund, Introductory lecture: Oxide surfaces, Faraday Discuss. 114, 1 (1999)
CrossRef ADS Google scholar
[7]
M. Ramamoorthy, D. Vanderbilt, and R. D. King-Smith, First-principles calculations of the energetics of stoichiometric TiO2 surfaces, Phys. Rev. B 49(23), 16721 (1994)
CrossRef ADS Google scholar
[8]
U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48(5–8), 53 (2003)
CrossRef ADS Google scholar
[9]
M. A. Henderson, An HREELS and TPD study of water on TiO2 (110): the extent of molecular versus dissociative adsorption, Surf. Sci. 355(1–3), 151 (1996)
CrossRef ADS Google scholar
[10]
I. M. Brookes, C. A. Muryn, and G. Thornton, Imaging water dissociation on TiO2 (110), Phys. Rev. Lett. 87(26), 266103 (2001)
CrossRef ADS Google scholar
[11]
R. Schaub, R. Thostrup, N. Lopez, E. Laegsgaard, I. Stensgaard, J. K. Norskov, and F. Besenbacher, Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110), Phys. Rev. Lett. 87(26), 266104 (2001)
CrossRef ADS Google scholar
[12]
O. Bikondoa, C. L. Pang, R. Ithnin, C. A. Muryn, H. Onishi, and G. Thornton, Direct visualization of defect-mediated dissociation of water on TiO2 (110), Nat. Mater. 5(3), 189 (2006)
CrossRef ADS Google scholar
[13]
S. Wendt, J. Matthiesen, R. Schaub, E. K. Vestergaard, E. Lægsgaard, F. Besenbacher, and B. Hammer, Formation and splitting of paired hydroxyl groups on reduced TiO2 (110), Phys. Rev. Lett. 96(6), 066107 (2006)
CrossRef ADS Google scholar
[14]
M. A. Henderson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep. 66(6–7), 185 (2011)
CrossRef ADS Google scholar
[15]
C. L. Pang, R. Lindsay, and G. Thornton, Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces., Chem. Rev. 113(6), 3887 (2013)
CrossRef ADS Google scholar
[16]
M. B. Hugenschmidt, L. Gamble, and C. T. Campbell, The interaction of H2O with a TiO2 (110) surface, Surf. Sci. 302(3), 329 (1994)
CrossRef ADS Google scholar
[17]
L. E. Walle, A. Borg, P. Uvdal, and A. Sandell, Experimental evidence for mixed dissociative and molecular adsorption of water on a rutile TiO2 (110) surface without oxygen vacancies, Phys. Rev. B 80(23), 235436 (2009)
CrossRef ADS Google scholar
[18]
H. H. Kristoffersen, J. Ø. Hansen, U. Martinez, Y. Y. Wei, J. Matthiesen, R. Streber, R. Bechstein, E. Lægsgaard, F. Besenbacher, B. Hammer, and S. Wendt, Role of steps in the dissociative adsorption of water on rutile TiO2 (110), Phys. Rev. Lett. 110(14), 146101 (2013)
CrossRef ADS Google scholar
[19]
E. V. Stefanovich and T. N. Truong, Ab initio study of water adsorption on TiO2 (110): molecular adsorption versus dissociative chemisorption, Chem. Phys. Lett. 299(6), 623 (1999)
CrossRef ADS Google scholar
[20]
W. Langel, Car-Parrinello simulation of H2O dissociation on rutile, Surf. Sci. 496(1–2), 141 (2002)
CrossRef ADS Google scholar
[21]
P. J. D. Lindan, N. M. Harrison, J. M. Holender, and M. J. Gillan, First-principles molecular dynamics simulation of water dissociation on TiO2 (110), Chem. Phys. Lett. 261(3), 246 (1996)
CrossRef ADS Google scholar
[22]
P. J. D. Lindan, N. M. Harrison, and M. J. Gillan, Mixed dissociative and molecular adsorption of water on the rutile (110) surface, Phys. Rev. Lett. 80(4), 762 (1998)
CrossRef ADS Google scholar
[23]
L. E. Walle, D. Ragazzon, A. Borg, P. Uvdal, and A. Sandell, Competing water dissociation channels on rutile TiO2 (110), Surf. Sci. 621, 77 (2014)
CrossRef ADS Google scholar
[24]
W. H. Zhang, J. L. Yang, Y. Luo, S. Monti, and V. Carravetta, Quantum molecular dynamics study of water on TiO2 (110) surface, J. Chem. Phys. 129(6), 064703 (2008)
CrossRef ADS Google scholar
[25]
L. A. Harris and A. A. Quong, Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2 (110), Phys. Rev. Lett. 93(8), 086105 (2004)
CrossRef ADS Google scholar
[26]
C. Zhang and P. J. D. Lindan, Multilayer water adsorption on rutile TiO2 (110): A first-principles study, J. Chem. Phys. 118(10), 4620 (2003)
CrossRef ADS Google scholar
[27]
N. Kumar, S. Neogi, P. R. C. Kent, A. V. Bandura, J. D. Kubicki, D. J. Wesolowski, D. Cole, and J. O. Sofo, Hydrogen bonds and vibrations of water on (110) rutile, J. Phys. Chem. C 113(31), 13732 (2009)
CrossRef ADS Google scholar
[28]
L. M. Liu, C. J. Zhang, G. Thornton, and A. Michaelides, Structure and dynamics of liquid water on rutile TiO2 (110), Phys. Rev. B 82(16), 161415 (2010)
CrossRef ADS Google scholar
[29]
H. Hussain, G. Tocci, T. Woolcot, X. Torrelles, C. L. Pang, D. S. Humphrey, C. M. Yim, D. C. Grinter, G. Cabailh, O. Bikondoa, R. Lindsay, J. Zegenhagen, A. Michaelides, and G. Thornton, Structure of a model TiO2 photocatalytic interface, Nat. Mater. 16(4), 461 (2017)
CrossRef ADS Google scholar
[30]
J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Comput. Phys. Commun. 167(2), 103 (2005)
CrossRef ADS Google scholar
[31]
A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38(6), 3098 (1988)
CrossRef ADS Google scholar
[32]
C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37(2), 785 (1988)
CrossRef ADS Google scholar
[33]
A. R. Khoei, P. Ghahremani, M. J. Abdolhosseini Qomi, and P. Banihashemi, Stability and sizedependency of temperature-related Cauchy-Born hypothesis, Comput. Mater. Sci. 50(5), 1731 (2011)
CrossRef ADS Google scholar
[34]
J. Oviedo, M. A. San Miguel, and J. F. Sanz, Oxygen vacancies on TiO2 (110) from first principles calculations, J. Chem. Phys. 121(15), 7427 (2004)
CrossRef ADS Google scholar
[35]
L. A. Harris and A. A. Quong, Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2 (110), Phys. Rev. Lett. 93, 086105 (2004)
CrossRef ADS Google scholar
[36]
P. J. D. Lindan and C. Zhang, Exothermic water dissociation on the rutile TiO2 (110) surface, Phys. Rev. B 72, 075439 (2005)
CrossRef ADS Google scholar
[37]
A. Laio and M. Parrinello, Escaping free-energy minima, PNAS 99(20), 12562 (2002)
CrossRef ADS Google scholar
[38]
D. Branduardi, G. Bussi, and M. Parrinello, Metadynamics with adaptive Gaussians, J. Chem. Theory Comput. 8(7), 2247 (2012)
CrossRef ADS Google scholar
[39]
N. G. Petrik and G. A. Kimmel, Reaction kinetics of water molecules with oxygen vacancies on rutile TiO2 (110), J. Phys. Chem. C 119(40), 23059 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(26486 KB)

Accesses

Citations

Detail

Sections
Recommended

/