Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields

Hao Zhu, Chong Xiao

PDF(1232 KB)
PDF(1232 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 138112. DOI: 10.1007/s11467-018-0756-4
NIMI-REVIEW ARTICLE
NIMI-REVIEW ARTICLE

Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields

Author information +
History +

Abstract

Thermoelectric materials provide a renewable and eco-friendly solution to mitigate energy shortages and to reduce environmental pollution via direct heat-to-electricity conversion. Discovery of the novel thermoelectric materials and optimization of the state-of-the-art material systems lie at the core of the thermoelectric society, the basic concept behind these being comprehension and manipulation of the physical principles and transport properties regarding thermoelectric materials. In this mini-review, certain examples for designing high-performance bulk thermoelectric materials are presented from the perspectives of both real objects and local fields. The highlights of this topic involve the Rashba effect, Peierls distortion, local magnetic field, and local stress field, which cover several aspects in the field of thermoelectric research. We conclude with an overview of future developments in thermoelectricity.

Keywords

thermoelectric materials / real objects / local fields

Cite this article

Download citation ▾
Hao Zhu, Chong Xiao. Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields. Front. Phys., 2018, 13(3): 138112 https://doi.org/10.1007/s11467-018-0756-4

References

[1]
J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science 321(5888), 554 (2008)
CrossRef ADS Google scholar
[2]
G. Tan, L. D. Zhao, and M. G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev. 116(19), 12123 (2016)
CrossRef ADS Google scholar
[3]
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451(7175), 163 (2008)
CrossRef ADS Google scholar
[4]
A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, III Goddard, and J. R. Heath, Silicon nanowires as efficient thermoelectric materials, Nature 451(7175), 168 (2008)
CrossRef ADS Google scholar
[5]
K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Highperformance bulk thermoelectrics with all-scale hierarchical architectures, Nature 489(7416), 414 (2012)
CrossRef ADS Google scholar
[6]
Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, Spin entropy as the likely source of enhanced thermopower in NaxCo2O4, Nature 423(6938), 425 (2003)
CrossRef ADS Google scholar
[7]
T. Zhu, C. Fu, H. Xie, Y. Liu, and X. Zhao, High efficiency half-Heusler thermoelectric materials for energy harvesting, Adv. Energy Mater. 5(19), 1500588 (2015)
CrossRef ADS Google scholar
[8]
D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, CsBi4Te6: A high-performance thermoelectric material for low-temperature applications, Science 287(5455), 1024 (2000)
CrossRef ADS Google scholar
[9]
J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, New and old concepts in thermoelectric materials, Angew. Chem. Int. Ed. 48(46), 8616 (2009)
CrossRef ADS Google scholar
[10]
J. He and T. M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward, Science 357(6358), eaak9997 (2017)
[11]
C. Xiao, Z. Li, K. Li, P. Huang, and Y. Xie, Decoupling interrelated parameters for designing high performance thermoelectric materials, Acc. Chem. Res. 47(4), 1287 (2014)
CrossRef ADS Google scholar
[12]
G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nat. Mater. 7(2), 105 (2008)
CrossRef ADS Google scholar
[13]
A. M. Dehkordi, M. Zebarjadi, J. He, and T. M. Tritt, Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials, Mater. Sci. Eng. R 97, 1 (2015)
CrossRef ADS Google scholar
[14]
X. Shi, L. Chen, and C. Uher, Recent advances in highperformance bulk thermoelectric materials, Int. Mater. Rev. 61(6), 379 (2016)
CrossRef ADS Google scholar
[15]
L. D. Zhao, V. P. Dravid, and M. G. Kanatzidis, The panoscopic approach to high performance thermoelectrics, Energy Environ. Sci. 7(1), 251 (2014)
CrossRef ADS Google scholar
[16]
E. S. Toberer, A. F. May, and G. J. Snyder, Zintl chemistry for designing high efficiency thermoelectric materials, Chem. Mater. 22(3), 624 (2010)
CrossRef ADS Google scholar
[17]
W. G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z. M. Gibbs, C. Felser, and G. J. Snyder, Engineering half- Heusler thermoelectric materials using Zintl chemistry, Nat. Rev. Mater. 1(6), 16032 (2016)
CrossRef ADS Google scholar
[18]
R. Venkatasubramanian, Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures, Phys. Rev. B 61(4), 3091 (2000)
CrossRef ADS Google scholar
[19]
S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, and S. W. Kim, Dense dislocation arrays embedded in grain boundaries for highperformance bulk thermoelectrics, Science 348(6230), 109 (2015)
CrossRef ADS Google scholar
[20]
X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports, J. Am. Chem. Soc. 133(20), 7837 (2011)
CrossRef ADS Google scholar
[21]
W. Kim, Strategies for engineering phonon transport in thermoelectrics, J. Mater. Chem. C 3(40), 10336 (2015)
CrossRef ADS Google scholar
[22]
Z. Chen, B. Ge, W. Li, S. Lin, J. Shen, Y. Chang, R. Hanus, G. J. Snyder, and Y. Pei, Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics, Nat. Commun. 8, 13828 (2017)
CrossRef ADS Google scholar
[23]
Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature 473(7345), 66 (2011)
CrossRef ADS Google scholar
[24]
L. D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, and M. G. Kanatzidis, Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe, Science 351(6269), 141 (2016)
CrossRef ADS Google scholar
[25]
Y. Tang, Z. M. Gibbs, L. A. Agapito, G. Li, H. S. Kim, M. B. Nardelli, S. Curtarolo, and G. J. Snyder, Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites, Nat. Mater. 14(12), 1223 (2015)
CrossRef ADS Google scholar
[26]
K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Strained endotaxial nanostructures with high thermoelectric figure of merit, Nat. Chem. 3(2), 160 (2011)
CrossRef ADS Google scholar
[27]
W. G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z. M. Gibbs, C. Felser, and G. J. Snyder, Engineering half- Heusler thermoelectric materials using Zintl chemistry,Nat. Rev. Mater. 1(6), 16032 (2016)
CrossRef ADS Google scholar
[28]
W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions, Phys. Rev. Lett. 108(16), 166601 (2012)
CrossRef ADS Google scholar
[29]
H. Wang, Y. Pei, A. D. LaLonde, and G. J. Snyder, Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe, Proc. Natl. Acad. Sci. USA 109(25), 9705 (2012)
CrossRef ADS Google scholar
[30]
Y. Pei, H. Wang, and G. J. Snyder, Band engineering of thermoelectric materials, Adv. Mater. 24(46), 6125 (2012)
CrossRef ADS Google scholar
[31]
Y. Pei, C. Chang, Z. Wang, M. Yin, M. Wu, G. Tan, H. Wu, Y. Chen, L. Zheng, S. Gong, T. Zhu, X. Zhao, L. Huang, J. He, M. G. Kanatzidis, and L. D. Zhao, Multiple converged conduction bands in K2Bi8Se13: A promising thermoelectric material with extremely low thermal conductivity, J. Am. Chem. Soc. 138(50), 16364 (2016)
CrossRef ADS Google scholar
[32]
H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G. J. Snyder, Copper ion liquid-like thermoelectrics, Nat. Mater. 11(5), 422 (2012)
CrossRef ADS Google scholar
[33]
C. W. Li, J. Hong, A. F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers, and O. Delaire, Orbitally driven giant phonon anharmonicity in SnSe, Nat. Phys. 11(12), 1063 (2015)
[34]
G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B. B. Iversen, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nat. Mater. 3(7), 458 (2004)
CrossRef ADS Google scholar
[35]
M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Lefmann, J. Andreasson, C. R. H. Bahl, and B. B. Iversen, Avoided crossing of rattler modes in thermoelectric materials, Nat. Mater. 7(10), 811 (2008)
CrossRef ADS Google scholar
[36]
O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M. H. Du, D. J. Singh, A. Podlesnyak, G. Ehlers, M. D. Lumsden, and B. C. Sales, Giant anharmonic phonon scattering in PbTe, Nat. Mater. 10(8), 614 (2011)
CrossRef ADS Google scholar
[37]
W. Zhao, P. Wei, Q. Zhang, H. Peng, W. Zhu, D. Tang, J. Yu, H. Zhou, Z. Liu, X. Mu, D. He, J. Li, C. Wang, X. Tang, and J. Yang, Multi-localization transport behaviour in bulk thermoelectric materials, Nat. Commun. 6(1), 6197 (2015)
CrossRef ADS Google scholar
[38]
Z. Li, C. Xiao, H. Zhu, and Y. Xie, Defect chemistry for thermoelectric materials, J. Am. Chem. Soc. 138(45), 14810 (2016)
CrossRef ADS Google scholar
[39]
T. Zhu, L. Hu, X. Zhao, and J. He, New insights into intrinsic point defects in V2VI3 thermoelectric materials, Adv. Sci. 3(7), 1600004 (2016)
CrossRef ADS Google scholar
[40]
C. Xiao, J. Xu, B. Cao, K. Li, M. Kong, and Y. Xie, Solid-solutioned homojunction nanoplates with disordered lattice: A promising approach toward “phonon glass electron crystal” thermoelectric materials, J. Am. Chem. Soc. 134(18), 7971 (2012)
CrossRef ADS Google scholar
[41]
L. E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science 321(5895), 1457 (2008)
CrossRef ADS Google scholar
[42]
P. Gorai, V. Stevanović, and E. S. Toberer, Computationally guided discovery of thermoelectric materials, Nat. Rev. Mater. 2(9), 17053 (2017)
CrossRef ADS Google scholar
[43]
J. P. Heremans, R. J. Cava, and N. Samarth, Tetradymites as thermoelectrics and topological insulators, Nat. Rev. Mater. 2(10), 17049 (2017)
CrossRef ADS Google scholar
[44]
J. Ravichandran, Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices, J. Mater. Res. 32(01), 183 (2017)
CrossRef ADS Google scholar
[45]
X. Wang, P. Wang, J. Wang, W. Hu, X. Zhou, N. Guo, H. Huang, S. Sun, H. Shen, T. Lin, M. Tang, L. Liao, A. Jiang, J. Sun, X. Meng, X. Chen, W. Lu, and J. Chu, Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics, Adv. Mater. 27(42), 6575 (2015)
CrossRef ADS Google scholar
[46]
W. Ren, H. Geng, Z. Zhang, and L. Zhang, Fillingfraction fluctuation leading to glasslike ultralow thermal conductivity in caged skutterudites, Phys. Rev. Lett. 118(24), 245901 (2017)
CrossRef ADS Google scholar
[47]
E. Cappelluti, C. Grimaldi, and F. Marsiglio, Topological change of the Fermi surface in low-density rashba gases: Application to superconductivity, Phys. Rev. Lett. 98(16), 167002 (2007)
CrossRef ADS Google scholar
[48]
R. Winkler, S. J. Papadakis, E. P. Poortere, and M. Shayegan, Spin-orbit coupling in two-dimensional electron and hole systems, Adv. Solid State Phys. 41, 211 (2003)
CrossRef ADS Google scholar
[49]
K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, and Y. Tokura, Giant Rashba-type spin splitting in bulk BiTeI, Nat. Mater. 10(7), 521 (2011)
CrossRef ADS Google scholar
[50]
M. Sakano, M. S. Bahramy, A. Katayama, T. Shimojima, H. Murakawa, Y. Kaneko, W. Malaeb, S. Shin, K. Ono, H. Kumigashira, R. Arita, N. Nagaosa, H. Y. Hwang, Y. Tokura, and K. Ishizaka, Strongly spinorbit coupled two-dimensional electron gas emerging near the surface of polar semiconductors, Phys. Rev. Lett. 110(10), 107204 (2013)
CrossRef ADS Google scholar
[51]
H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, Detection of Berry’s phase in a bulk Rashba semiconductor, Science 342(6165), 1490 (2013)
CrossRef ADS Google scholar
[52]
S. Brown and G. Grüner, Charge and spin density waves, Sci. Am. 270(4), 50 (1994)
CrossRef ADS Google scholar
[53]
J. S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim, and G. Kotliar, Peierls distortion as a route to high thermoelectric performance in In4Se3−dcrystals, Nature 459(7249), 965 (2009)
CrossRef ADS Google scholar
[54]
W. G. Zeier, A. Zevalkink, Z. M. Gibbs, G. Hautier, M. G. Kanatzidis, and G. J. Snyder, Thinking like a chemist: Intuition in thermoelectric materials, Angew. Chem. Int. Ed. 55(24), 6826 (2016)
CrossRef ADS Google scholar
[55]
H. Wang, J. Wang, X. Cao, and G. J. Snyder, Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit, J. Mater. Chem. A 2(9), 3169 (2014)
CrossRef ADS Google scholar
[56]
W. Zhao, Z. Liu, P. Wei, Q. Zhang, W. Zhu, X. Su, X. Tang, J. Yang, Y. Liu, J. Shi, Y. Chao, S. Lin, and Y. Pei, Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials, Nat. Nanotechnol. 12(1), 55 (2016)
CrossRef ADS Google scholar
[57]
W. Zhao, Z. Liu, Z. Sun, Q. Zhang, P. Wei, X. Mu, H. Zhou, C. Li, S. Ma, D. He, P. Ji, W. Zhu, X. Nie, X. Su, X. Tang, B. Shen, X. Dong, J. Yang, Y. Liu, and J. Shi, Superparamagnetic enhancement of thermoelectric performance, Nature 549(7671), 247 (2017)
CrossRef ADS Google scholar
[58]
J. Zhang, L. Song, G. K. H. Madsen, K. F. F. Fischer, W. Zhang, X. Shi, and B. B. Iversen, Designing highperformance layered thermoelectric materials through orbital engineering, Nat. Commun. 7, 10892 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1232 KB)

Accesses

Citations

Detail

Sections
Recommended

/