Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields
Hao Zhu, Chong Xiao
Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields
Thermoelectric materials provide a renewable and eco-friendly solution to mitigate energy shortages and to reduce environmental pollution via direct heat-to-electricity conversion. Discovery of the novel thermoelectric materials and optimization of the state-of-the-art material systems lie at the core of the thermoelectric society, the basic concept behind these being comprehension and manipulation of the physical principles and transport properties regarding thermoelectric materials. In this mini-review, certain examples for designing high-performance bulk thermoelectric materials are presented from the perspectives of both real objects and local fields. The highlights of this topic involve the Rashba effect, Peierls distortion, local magnetic field, and local stress field, which cover several aspects in the field of thermoelectric research. We conclude with an overview of future developments in thermoelectricity.
thermoelectric materials / real objects / local fields
[1] |
J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science 321(5888), 554 (2008)
CrossRef
ADS
Google scholar
|
[2] |
G. Tan, L. D. Zhao, and M. G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev. 116(19), 12123 (2016)
CrossRef
ADS
Google scholar
|
[3] |
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451(7175), 163 (2008)
CrossRef
ADS
Google scholar
|
[4] |
A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, III Goddard, and J. R. Heath, Silicon nanowires as efficient thermoelectric materials, Nature 451(7175), 168 (2008)
CrossRef
ADS
Google scholar
|
[5] |
K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Highperformance bulk thermoelectrics with all-scale hierarchical architectures, Nature 489(7416), 414 (2012)
CrossRef
ADS
Google scholar
|
[6] |
Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, Spin entropy as the likely source of enhanced thermopower in NaxCo2O4, Nature 423(6938), 425 (2003)
CrossRef
ADS
Google scholar
|
[7] |
T. Zhu, C. Fu, H. Xie, Y. Liu, and X. Zhao, High efficiency half-Heusler thermoelectric materials for energy harvesting, Adv. Energy Mater. 5(19), 1500588 (2015)
CrossRef
ADS
Google scholar
|
[8] |
D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, CsBi4Te6: A high-performance thermoelectric material for low-temperature applications, Science 287(5455), 1024 (2000)
CrossRef
ADS
Google scholar
|
[9] |
J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, New and old concepts in thermoelectric materials, Angew. Chem. Int. Ed. 48(46), 8616 (2009)
CrossRef
ADS
Google scholar
|
[10] |
J. He and T. M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward, Science 357(6358), eaak9997 (2017)
|
[11] |
C. Xiao, Z. Li, K. Li, P. Huang, and Y. Xie, Decoupling interrelated parameters for designing high performance thermoelectric materials, Acc. Chem. Res. 47(4), 1287 (2014)
CrossRef
ADS
Google scholar
|
[12] |
G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nat. Mater. 7(2), 105 (2008)
CrossRef
ADS
Google scholar
|
[13] |
A. M. Dehkordi, M. Zebarjadi, J. He, and T. M. Tritt, Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials, Mater. Sci. Eng. R 97, 1 (2015)
CrossRef
ADS
Google scholar
|
[14] |
X. Shi, L. Chen, and C. Uher, Recent advances in highperformance bulk thermoelectric materials, Int. Mater. Rev. 61(6), 379 (2016)
CrossRef
ADS
Google scholar
|
[15] |
L. D. Zhao, V. P. Dravid, and M. G. Kanatzidis, The panoscopic approach to high performance thermoelectrics, Energy Environ. Sci. 7(1), 251 (2014)
CrossRef
ADS
Google scholar
|
[16] |
E. S. Toberer, A. F. May, and G. J. Snyder, Zintl chemistry for designing high efficiency thermoelectric materials, Chem. Mater. 22(3), 624 (2010)
CrossRef
ADS
Google scholar
|
[17] |
W. G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z. M. Gibbs, C. Felser, and G. J. Snyder, Engineering half- Heusler thermoelectric materials using Zintl chemistry, Nat. Rev. Mater. 1(6), 16032 (2016)
CrossRef
ADS
Google scholar
|
[18] |
R. Venkatasubramanian, Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures, Phys. Rev. B 61(4), 3091 (2000)
CrossRef
ADS
Google scholar
|
[19] |
S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, and S. W. Kim, Dense dislocation arrays embedded in grain boundaries for highperformance bulk thermoelectrics, Science 348(6230), 109 (2015)
CrossRef
ADS
Google scholar
|
[20] |
X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports, J. Am. Chem. Soc. 133(20), 7837 (2011)
CrossRef
ADS
Google scholar
|
[21] |
W. Kim, Strategies for engineering phonon transport in thermoelectrics, J. Mater. Chem. C 3(40), 10336 (2015)
CrossRef
ADS
Google scholar
|
[22] |
Z. Chen, B. Ge, W. Li, S. Lin, J. Shen, Y. Chang, R. Hanus, G. J. Snyder, and Y. Pei, Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics, Nat. Commun. 8, 13828 (2017)
CrossRef
ADS
Google scholar
|
[23] |
Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature 473(7345), 66 (2011)
CrossRef
ADS
Google scholar
|
[24] |
L. D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, and M. G. Kanatzidis, Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe, Science 351(6269), 141 (2016)
CrossRef
ADS
Google scholar
|
[25] |
Y. Tang, Z. M. Gibbs, L. A. Agapito, G. Li, H. S. Kim, M. B. Nardelli, S. Curtarolo, and G. J. Snyder, Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites, Nat. Mater. 14(12), 1223 (2015)
CrossRef
ADS
Google scholar
|
[26] |
K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Strained endotaxial nanostructures with high thermoelectric figure of merit, Nat. Chem. 3(2), 160 (2011)
CrossRef
ADS
Google scholar
|
[27] |
W. G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z. M. Gibbs, C. Felser, and G. J. Snyder, Engineering half- Heusler thermoelectric materials using Zintl chemistry,Nat. Rev. Mater. 1(6), 16032 (2016)
CrossRef
ADS
Google scholar
|
[28] |
W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions, Phys. Rev. Lett. 108(16), 166601 (2012)
CrossRef
ADS
Google scholar
|
[29] |
H. Wang, Y. Pei, A. D. LaLonde, and G. J. Snyder, Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe, Proc. Natl. Acad. Sci. USA 109(25), 9705 (2012)
CrossRef
ADS
Google scholar
|
[30] |
Y. Pei, H. Wang, and G. J. Snyder, Band engineering of thermoelectric materials, Adv. Mater. 24(46), 6125 (2012)
CrossRef
ADS
Google scholar
|
[31] |
Y. Pei, C. Chang, Z. Wang, M. Yin, M. Wu, G. Tan, H. Wu, Y. Chen, L. Zheng, S. Gong, T. Zhu, X. Zhao, L. Huang, J. He, M. G. Kanatzidis, and L. D. Zhao, Multiple converged conduction bands in K2Bi8Se13: A promising thermoelectric material with extremely low thermal conductivity, J. Am. Chem. Soc. 138(50), 16364 (2016)
CrossRef
ADS
Google scholar
|
[32] |
H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G. J. Snyder, Copper ion liquid-like thermoelectrics, Nat. Mater. 11(5), 422 (2012)
CrossRef
ADS
Google scholar
|
[33] |
C. W. Li, J. Hong, A. F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers, and O. Delaire, Orbitally driven giant phonon anharmonicity in SnSe, Nat. Phys. 11(12), 1063 (2015)
|
[34] |
G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B. B. Iversen, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nat. Mater. 3(7), 458 (2004)
CrossRef
ADS
Google scholar
|
[35] |
M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Lefmann, J. Andreasson, C. R. H. Bahl, and B. B. Iversen, Avoided crossing of rattler modes in thermoelectric materials, Nat. Mater. 7(10), 811 (2008)
CrossRef
ADS
Google scholar
|
[36] |
O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M. H. Du, D. J. Singh, A. Podlesnyak, G. Ehlers, M. D. Lumsden, and B. C. Sales, Giant anharmonic phonon scattering in PbTe, Nat. Mater. 10(8), 614 (2011)
CrossRef
ADS
Google scholar
|
[37] |
W. Zhao, P. Wei, Q. Zhang, H. Peng, W. Zhu, D. Tang, J. Yu, H. Zhou, Z. Liu, X. Mu, D. He, J. Li, C. Wang, X. Tang, and J. Yang, Multi-localization transport behaviour in bulk thermoelectric materials, Nat. Commun. 6(1), 6197 (2015)
CrossRef
ADS
Google scholar
|
[38] |
Z. Li, C. Xiao, H. Zhu, and Y. Xie, Defect chemistry for thermoelectric materials, J. Am. Chem. Soc. 138(45), 14810 (2016)
CrossRef
ADS
Google scholar
|
[39] |
T. Zhu, L. Hu, X. Zhao, and J. He, New insights into intrinsic point defects in V2VI3 thermoelectric materials, Adv. Sci. 3(7), 1600004 (2016)
CrossRef
ADS
Google scholar
|
[40] |
C. Xiao, J. Xu, B. Cao, K. Li, M. Kong, and Y. Xie, Solid-solutioned homojunction nanoplates with disordered lattice: A promising approach toward “phonon glass electron crystal” thermoelectric materials, J. Am. Chem. Soc. 134(18), 7971 (2012)
CrossRef
ADS
Google scholar
|
[41] |
L. E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science 321(5895), 1457 (2008)
CrossRef
ADS
Google scholar
|
[42] |
P. Gorai, V. Stevanović, and E. S. Toberer, Computationally guided discovery of thermoelectric materials, Nat. Rev. Mater. 2(9), 17053 (2017)
CrossRef
ADS
Google scholar
|
[43] |
J. P. Heremans, R. J. Cava, and N. Samarth, Tetradymites as thermoelectrics and topological insulators, Nat. Rev. Mater. 2(10), 17049 (2017)
CrossRef
ADS
Google scholar
|
[44] |
J. Ravichandran, Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices, J. Mater. Res. 32(01), 183 (2017)
CrossRef
ADS
Google scholar
|
[45] |
X. Wang, P. Wang, J. Wang, W. Hu, X. Zhou, N. Guo, H. Huang, S. Sun, H. Shen, T. Lin, M. Tang, L. Liao, A. Jiang, J. Sun, X. Meng, X. Chen, W. Lu, and J. Chu, Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics, Adv. Mater. 27(42), 6575 (2015)
CrossRef
ADS
Google scholar
|
[46] |
W. Ren, H. Geng, Z. Zhang, and L. Zhang, Fillingfraction fluctuation leading to glasslike ultralow thermal conductivity in caged skutterudites, Phys. Rev. Lett. 118(24), 245901 (2017)
CrossRef
ADS
Google scholar
|
[47] |
E. Cappelluti, C. Grimaldi, and F. Marsiglio, Topological change of the Fermi surface in low-density rashba gases: Application to superconductivity, Phys. Rev. Lett. 98(16), 167002 (2007)
CrossRef
ADS
Google scholar
|
[48] |
R. Winkler, S. J. Papadakis, E. P. Poortere, and M. Shayegan, Spin-orbit coupling in two-dimensional electron and hole systems, Adv. Solid State Phys. 41, 211 (2003)
CrossRef
ADS
Google scholar
|
[49] |
K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, and Y. Tokura, Giant Rashba-type spin splitting in bulk BiTeI, Nat. Mater. 10(7), 521 (2011)
CrossRef
ADS
Google scholar
|
[50] |
M. Sakano, M. S. Bahramy, A. Katayama, T. Shimojima, H. Murakawa, Y. Kaneko, W. Malaeb, S. Shin, K. Ono, H. Kumigashira, R. Arita, N. Nagaosa, H. Y. Hwang, Y. Tokura, and K. Ishizaka, Strongly spinorbit coupled two-dimensional electron gas emerging near the surface of polar semiconductors, Phys. Rev. Lett. 110(10), 107204 (2013)
CrossRef
ADS
Google scholar
|
[51] |
H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, Detection of Berry’s phase in a bulk Rashba semiconductor, Science 342(6165), 1490 (2013)
CrossRef
ADS
Google scholar
|
[52] |
S. Brown and G. Grüner, Charge and spin density waves, Sci. Am. 270(4), 50 (1994)
CrossRef
ADS
Google scholar
|
[53] |
J. S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim, and G. Kotliar, Peierls distortion as a route to high thermoelectric performance in In4Se3−dcrystals, Nature 459(7249), 965 (2009)
CrossRef
ADS
Google scholar
|
[54] |
W. G. Zeier, A. Zevalkink, Z. M. Gibbs, G. Hautier, M. G. Kanatzidis, and G. J. Snyder, Thinking like a chemist: Intuition in thermoelectric materials, Angew. Chem. Int. Ed. 55(24), 6826 (2016)
CrossRef
ADS
Google scholar
|
[55] |
H. Wang, J. Wang, X. Cao, and G. J. Snyder, Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit, J. Mater. Chem. A 2(9), 3169 (2014)
CrossRef
ADS
Google scholar
|
[56] |
W. Zhao, Z. Liu, P. Wei, Q. Zhang, W. Zhu, X. Su, X. Tang, J. Yang, Y. Liu, J. Shi, Y. Chao, S. Lin, and Y. Pei, Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials, Nat. Nanotechnol. 12(1), 55 (2016)
CrossRef
ADS
Google scholar
|
[57] |
W. Zhao, Z. Liu, Z. Sun, Q. Zhang, P. Wei, X. Mu, H. Zhou, C. Li, S. Ma, D. He, P. Ji, W. Zhu, X. Nie, X. Su, X. Tang, B. Shen, X. Dong, J. Yang, Y. Liu, and J. Shi, Superparamagnetic enhancement of thermoelectric performance, Nature 549(7671), 247 (2017)
CrossRef
ADS
Google scholar
|
[58] |
J. Zhang, L. Song, G. K. H. Madsen, K. F. F. Fischer, W. Zhang, X. Shi, and B. B. Iversen, Designing highperformance layered thermoelectric materials through orbital engineering, Nat. Commun. 7, 10892 (2016)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |