Self-folding mechanics of graphene tearing and peeling from a substrate

Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu

PDF(12256 KB)
PDF(12256 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 138111. DOI: 10.1007/s11467-018-0755-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Self-folding mechanics of graphene tearing and peeling from a substrate

Author information +
History +

Abstract

Understanding the underlying mechanism in the tearing and peeling processes of graphene is crucial for the further hierarchical design of origami-like folding and kirigami-like cutting of graphene. However, the complex effects among bending moduli, adhesion, interlayer interaction, and local crystal structure during origami-like folding and kirigami-like cutting remain unclear, resulting in challenges to the practical applications of existing theoretical and experimental findings as well as to potential manipulations of graphene in metamaterials and nanodevices. Toward this end, classical molecular dynamics (MD) simulations are performed with synergetic theoretical analysis to explore the tearing and peeling of self-folded graphene from a substrate driven by external force and by thermal activation. It is found that the elastic energy localized at the small folding ridge plays a significant role in the crack trajectory. Due to the extremely small bending modulus of monolayer graphene, its taper angle when pulled by an external force follows a scaling law distinct from that in case of bilayer graphene. With the increase in the initial width of the folding ridge, the self-folded graphene, motivated by thermal fluctuations, can be self-assembled by spontaneous self-tearing and peeling from a substrate. Simultaneously, the scaling law between the taper angle and adhesive energy is independent of the motivations for thermal activation-induced self-assembly and external force tearing, providing effective insights into the underlying physics for graphene-based origami-like folding and kirigami-like cutting.

Keywords

graphene / tearing / self-assembly / elastic energy / molecular dynamics simulation

Cite this article

Download citation ▾
Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate. Front. Phys., 2018, 13(3): 138111 https://doi.org/10.1007/s11467-018-0755-5

References

[1]
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
CrossRef ADS Google scholar
[2]
A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef ADS Google scholar
[3]
R. Nair, H. Wu, P. Jayaram, I. Grigorieva, and A. Geim, Unimpeded permeation of water through helium-leak– tight graphene-based membranes, Science 335(6067), 442 (2012)
CrossRef ADS Google scholar
[4]
S. Hu, M. Lozada-Hidalgo, F. Wang, A. Mishchenko, F. Schedin, R. Nair, E. Hill, D. Boukhvalov, M. Katsnelson, R. Dryfe, I. V. Grigorieva, H. A. Wu, and A. K. Geim, Proton transport through one-atom-thick crystals, Nature 516(7530), 227 (2014)
CrossRef ADS Google scholar
[5]
R. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. Wu, A. K. Geim, and R. R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science 343(6172), 752 (2014)
CrossRef ADS Google scholar
[6]
X. Liu, F. Wang, H. Wu, and W. Wang, Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface, Appl. Phys. Lett. 104(23), 231901 (2014)
CrossRef ADS Google scholar
[7]
M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Q. An, L. Xu, C. Niu, Y. Zhao, X. Tian, P. Hu, H. Wu, and L. Mai, Nanowire templated semihollow bicontinuous graphene scrolls: Designed construction, mechanism, and enhanced energy storage performance, J. Am. Chem. Soc. 135(48), 18176 (2013)
CrossRef ADS Google scholar
[8]
D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R. Felts, H. Gao, R. Huang, J. S. Kim, T. Li, Y. Li, K. M. Liechti, N. Lu, H. S. Park, E. J. Reed, P. Wang, B. I. Yakobson, T. Zhang, Y. W. Zhang, Y. Zhou, and Y. Zhu, A review on mechanics and mechanical properties of 2D materials — Graphene and beyond, Extreme Mechanics Letters 13, 42 (2017)
CrossRef ADS Google scholar
[9]
V. Panchal, C. Giusca, A. Lartsev, R. Yakimova, and O. Kazakova, Local electric field screening in bi-layer graphene devices,Front. Phys. 2, 3 (2014)
CrossRef ADS Google scholar
[10]
G. Algara-Siller, O. Lehtinen, F. Wang, R. Nair, U. Kaiser, H. Wu, A. Geim, and I. Grigorieva, Square ice in graphene nanocapillaries, Nature 519(7544), 443 (2015)
CrossRef ADS Google scholar
[11]
Y. Zhu, F. Wang, J. Bai, X. C. Zeng, and H. Wu, Compression limit of two-dimensional water constrained in graphene nanocapillaries, ACS Nano 9(12), 12197 (2015)
CrossRef ADS Google scholar
[12]
H. Yin, H. J. Qi, F. Fan, T. Zhu, B. Wang, and Y. Wei, Griffith criterion for brittle fracture in graphene, Nano Lett. 15(3), 1918 (2015)
CrossRef ADS Google scholar
[13]
Z. Song, Y. Ni, and Z. Xu, Geometrical distortion leads to Griffith strength reduction in graphene membranes, Extreme Mechanics Letters 14, 31 (2017)
CrossRef ADS Google scholar
[14]
J. W. Jiang and H. S. Park, Negative Poisson’s ratio in single-layer graphene ribbons, Nano Lett. 16(4), 2657 (2016)
CrossRef ADS Google scholar
[15]
J. W. Jiang, T. Chang, X. Guo, and H. S. Park, Intrinsic negative Poisson’s ratio for single-layer graphene, Nano Lett. 16(8), 5286 (2016)
CrossRef ADS Google scholar
[16]
G. Wang, Z. Dai, Y. Wang, P. Tan, L. Liu, Z. Xu, Y. Wei, R. Huang, and Z. Zhang, Measuring interlayer shear stress in bilayer graphene, Phys. Rev. Lett. 119(3), 036101 (2017)
CrossRef ADS Google scholar
[17]
J. Annett and G. L. Cross, Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate, Nature 535(7611), 271 (2016)
CrossRef ADS Google scholar
[18]
Y. Zhang, F. Zhang, Z. Yan, Q. Ma, X. Li, Y. Huang, and J. A. Rogers, Printing, folding and assembly methods for forming 3D mesostructures in advanced materials, Nature Reviews Materials 2(4), 17019 (2017)
CrossRef ADS Google scholar
[19]
X. Meng, M. Li, Z. Kang, X. Zhang, and J. Xiao, Mechanics of self-folding of single-layer graphene, J. Phys. D Appl. Phys. 46(5), 055308 (2013)
CrossRef ADS Google scholar
[20]
X. Chen, L. Zhang, Y. Zhao, X. Wang, and C. Ke, Graphene folding on flat substrates, J. Appl. Phys. 116(16), 164301 (2014)
CrossRef ADS Google scholar
[21]
X. Liu, F. Wang, and H. Wu, Anisotropic growth of buckling-driven wrinkles in graphene monolayer, Nanotechnology 26(6), 065701 (2015)
CrossRef ADS Google scholar
[22]
M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, Graphene kirigami, Nature 524(7564), 204 (2015)
CrossRef ADS Google scholar
[23]
T. Zhang, S. Wu, R. Yang, and G. Zhang, Graphene: Nanostructure engineering and applications, Front. Phys. 12(1), 127206 (2017)
CrossRef ADS Google scholar
[24]
E. Hamm, P. Reis, M. LeBlanc, B. Roman, and E. Cerda, Tearing as a test for mechanical characterization of thin adhesive films, Nat. Mater. 7(5), 386 (2008)
CrossRef ADS Google scholar
[25]
E. Bayart, A. Boudaoud, and M. Adda-Bedia, Finitedistance singularities in the tearing of thin sheets, Phys. Rev. Lett. 106(19), 194301 (2011)
CrossRef ADS Google scholar
[26]
O. Kruglova, F. Brau, D. Villers, and P. Damman, How geometry controls the tearing of adhesive thin films on curved surfaces, Phys. Rev. Lett. 107(16), 164303 (2011)
CrossRef ADS Google scholar
[27]
F. Brau, Tearing of thin sheets: cracks interacting through an elastic ridge, Phys. Rev. E 90(6), 062406 (2014)
CrossRef ADS Google scholar
[28]
B. Roman, Fracture path in brittle thin sheets: a unifying review on tearing, Int. J. Fract. 182(2), 209 (2013)
CrossRef ADS Google scholar
[29]
A. Ibarra, B. Roman, and F. Melo, The tearing path in a thin anisotropic sheet from two pulling points: Wulff’s view, Soft Matter 12(27), 5979 (2016)
CrossRef ADS Google scholar
[30]
T. Zhang, X. Li, and H. Gao, Fracture of graphene: A review, Int. J. Fract. 196(1–2), 1 (2015)
CrossRef ADS Google scholar
[31]
M. J. Moura and M. Marder, Tearing of free-standing graphene, Phys. Rev. E 88(3), 032405 (2013)
CrossRef ADS Google scholar
[32]
Y. Guo, C. Liu, Q. Yin, C. Wei, S. Lin, T. B. Hoffman, Y. Zhao, J. H. Edgar, Q. Chen, S. P. Lau, J. Dai, H. Yao, H. S. Wong, and Y. Chai, Distinctive in-plane cleavage behaviors of two-dimensional layered materials, ACS Nano 10(9), 8980 (2016)
CrossRef ADS Google scholar
[33]
J. Yang, Y. Wang, Y. Li, H. Gao, Y. Chai, and H. Yao, Edge orientations of mechanically exfoliated anisotropic two-dimensional materials, J. Mech. Phys. Solids 112, 157 (2018)
CrossRef ADS Google scholar
[34]
D. Sen, K. S. Novoselov, P. M. Reis, and M. J. Buehler, Tearing graphene sheets from adhesive substrates produces tapered nanoribbons, Small 6(10), 1108 (2010)
CrossRef ADS Google scholar
[35]
A. F. Fonseca and D. S. Galvao, Self-driven graphene tearing and peeling: A fully atomistic molecular dynamics investigation, arXiv: 1801.05354 (2018)
[36]
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
CrossRef ADS Google scholar
[37]
S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112(14), 6472 (2000)
CrossRef ADS Google scholar
[38]
Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, and M. Dresselhaus, The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene, Nat. Mater. 11(9), 759 (2012)
CrossRef ADS Google scholar
[39]
A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)
CrossRef ADS Google scholar
[40]
J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, and J. M. Zuo, Free folding of suspended graphene sheets by random mechanical stimulation, Phys. Rev. Lett. 104(16), 166805 (2010)
CrossRef ADS Google scholar
[41]
T. Kawai, S. Okada, Y. Miyamoto, and H. Hiura, Selfredirection of tearing edges in graphene: Tight-binding molecular dynamics simulations, Phys. Rev. B 80(3), 033401 (2009)
CrossRef ADS Google scholar
[42]
B. Lawn, Fracture of Brittle Solids, Cambridge: Cambridge University Press, 1993
[43]
Y. Wang and Z. Liu, The fracture toughness of graphene during the tearing process, Model. Simul. Mater. Sci. Eng. 24(8), 085002 (2016)
CrossRef ADS Google scholar
[44]
Y. Y. Zhang and Y. Gu, Mechanical properties of graphene: Effects of layer number, temperature and isotope, Comput. Mater. Sci. 71, 197 (2013)
CrossRef ADS Google scholar
[45]
V. Hakim and A. Karma, Laws of crack motion and phase-field models of fracture, J. Mech. Phys. Solids 57(2), 342 (2009)
CrossRef ADS Google scholar
[46]
S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, Ultrastrong adhesion of graphene membranes, Nat. Nanotechnol. 6(9), 543 (2011)
CrossRef ADS Google scholar
[47]
R. Huang, Graphene: Show of adhesive strength, Nat. Nanotechnol. 6(9), 537 (2011)
CrossRef ADS Google scholar
[48]
N. Lindahl, D. Midtvedt, J. Svensson, O. A. Nerushev, N. Lindvall, A. Isacsson, and E. E. Campbell, Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes, Nano Lett. 12(7), 3526 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(12256 KB)

Accesses

Citations

Detail

Sections
Recommended

/