Recent progress on borophene: Growth and structures
Longjuan Kong, Kehui Wu, Lan Chen
Recent progress on borophene: Growth and structures
Boron is the neighbor of carbon on the periodic table and exhibits unusual physical characteristics derived from electron-deficient, highly delocalized covalent bonds. As the nearest neighbor of carbon, boron is in many ways similar to carbon, such as having a short covalent radius and the flexibility to adopt sp2 hybridization. Hence, boron could be capable of forming monolayer structural analogues of graphene. Although many theoretical papers have reported finding two-dimensional allotropes of boron, there had been no experimental evidence for such atom-thin boron nanostructures until 2016. Recently, the successful synthesis of single-layer boron (referred to as borophene) on the Ag(111) substrate opens the era of boron nanostructures. In this brief review, we will discuss the progress that has been made on borophene in terms of synthetic techniques, characterizations and the atomic models. However, borophene is just in infancy; more efforts are expected to be made in future on the controlled synthesis of quality samples and tailoring its physical properties.
borophene / molecular beam epitaxy / scanning tunneling microscopy / atomic model / density functional theory
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[2] |
D. Akinwande, L. Tao, Q. Yu, X. Lou, P. Peng, and D. Kuzum, Large-area graphene electrodes: Using CVD to facilitate applications in commercial touchscreens, flex- ible nanoelectronics, and neural interfaces, IEEE Nanotechnol. Mag. 9(3), 6 (2015)
CrossRef
ADS
Google scholar
|
[3] |
A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7(11), 4598 (2015)
CrossRef
ADS
Google scholar
|
[4] |
G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol. 9(10), 768 (2014)
CrossRef
ADS
Google scholar
|
[5] |
A. L. Ivanovskii, Graphene-based and graphene-like materials, Russ. Chem. Rev. 81(7), 571 (2012)
CrossRef
ADS
Google scholar
|
[6] |
S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)
CrossRef
ADS
Google scholar
|
[7] |
J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)
CrossRef
ADS
Google scholar
|
[8] |
B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett. 12(7), 3507 (2012)
CrossRef
ADS
Google scholar
|
[9] |
P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Silicene: compelling experimental evidence for graphene-like two-dimensional silicon, Phys. Rev. Lett. 108(15), 155501 (2012)
CrossRef
ADS
Google scholar
|
[10] |
A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108(24), 245501 (2012)
CrossRef
ADS
Google scholar
|
[11] |
J. Gou, Q. Zhong, S. Sheng, W. Li, P. Cheng, H. Li, L. Chen, and, K. Wu, Strained monolayer germanene with 1×1 lattice on Sb(111), 2D Materials 3, 045005 (2016)
|
[12] |
L. Li, S. Lu, J. Pan, Z. Qin, Y. Wang, Y. Wang, G. y. Cao, S. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)
CrossRef
ADS
Google scholar
|
[13] |
S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)
CrossRef
ADS
Google scholar
|
[14] |
J. Gou, L. Kong, H. Li, Q. Zhong, W. Li, P. Cheng, L. Chen, and K. Wu, Strain-induced band engineering in monolayer stanene on Sb(111), Phys. Rev. Mater. 1(5), 054004 (2017)
CrossRef
ADS
Google scholar
|
[15] |
F.-F. Zhu, W.-J. Chen, Y. Xu, C.-L. Gao, D.-D. Guan, C.-H. Liu, D. Qian, S.-C. Zhang, and J.-F. Jia, Epitaxial growth of two-dimensional stanene, Nature Mater. 14, 1020 (2015)
CrossRef
ADS
Google scholar
|
[16] |
Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Large-gap quantum spin Hall insulators in thin films, Phys. Rev. Lett. 111(13), 136804 (2013)
CrossRef
ADS
Google scholar
|
[17] |
C. C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B 84(19), 195430 (2011)
CrossRef
ADS
Google scholar
|
[18] |
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)
CrossRef
ADS
Google scholar
|
[19] |
K. Takeda and K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B 50(20), 14916 (1994)
CrossRef
ADS
Google scholar
|
[20] |
K. H. Wu, A review of the growth and structures of silicene on Ag(111), Chin. Phys. B 24(8), 086802 (2015)
CrossRef
ADS
Google scholar
|
[21] |
H. J. Zhai, B. Kiran, J. Li, and L. S. Wang, Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity, Nat. Mater. 2(12), 827 (2003)
CrossRef
ADS
Google scholar
|
[22] |
A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, and A. I. Boldyrev, Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality, Acc. Chem. Res. 47(4), 1349 (2014)
CrossRef
ADS
Google scholar
|
[23] |
W. L. Li, Q. Chen, W. J. Tian, H. Bai, Y. F. Zhao, H. S. Hu, J. Li, H. J. Zhai, S. D. Li, and L. S. Wang, The B35 cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene, J. Am. Chem. Soc. 136(35), 12257 (2014)
CrossRef
ADS
Google scholar
|
[24] |
Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li, and L. S. Wang, Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets, Nat. Commun. 5, 3113 (2014)
CrossRef
ADS
Google scholar
|
[25] |
W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev, A concentric planar doubly-aromatic B19 cluster, Nat. Chem. 2(3), 202 (2010)
CrossRef
ADS
Google scholar
|
[26] |
H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang, Observation of an all-boron fullerene, Nat. Chem. 6(8), 727 (2014)
CrossRef
ADS
Google scholar
|
[27] |
J. Lv, Y. Wang, L. Zhu, and Y. Ma, B38: An all-boron fullerene analogue, Nanoscale 6(20), 11692 (2014)
CrossRef
ADS
Google scholar
|
[28] |
H. Li, N. Shao, B. Shang, L. F. Yuan, J. Yang, and X. C. Zeng, Icosahedral B12-containing core–shell structures of B80, Chem. Commun. 46(22), 3878 (2010)
CrossRef
ADS
Google scholar
|
[29] |
N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, B80 fullerene: An ab initio prediction of geometry, stability, and electronic structure,Phys. Rev. Lett. 98(16), 166804 (2007)
CrossRef
ADS
Google scholar
|
[30] |
J. Zhao, L. Wang, F. Li, and Z. Chen, B80 and other medium-sized boron clusters: Core-shell structures, not hollow cages, J. Phys. Chem. A 114(37), 9969 (2010)
CrossRef
ADS
Google scholar
|
[31] |
D. Ciuparu, R. F. Klie, Y. Zhu, and L. Pfefferle, Synthesis of pure boron single-wall nanotubes, J. Phys. Chem. B 108(13), 3967 (2004)
CrossRef
ADS
Google scholar
|
[32] |
J. Tian, Z. Xu, C. Shen, F. Liu, N. Xu, and H. J. Gao, One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications, Nanoscale 2(8), 1375 (2010)
CrossRef
ADS
Google scholar
|
[33] |
A. K. Singh, A. Sadrzadeh, and B. I. Yakobson, Probing properties of boron α-tubes by ab initiocalculations, Nano Lett. 8(5), 1314 (2008)
CrossRef
ADS
Google scholar
|
[34] |
T. Ogitsu, E. Schwegler, and G. Galli, β-rhombohedral boron: At the crossroads of the chemistry of boron and the physics of frustration, Chem. Rev. 113(5), 3425 (2013)
CrossRef
ADS
Google scholar
|
[35] |
J. K. Olson and A. I. Boldyrev, Electronic transmutation: Boron acquiring an extra electron becomes ‘carbon’, Chem. Phys. Lett. 523, 83 (2012)
CrossRef
ADS
Google scholar
|
[36] |
S. Saxena, Introduction to Boron Nanostructures, Handbook of Boron Nanostructures, 1 (2016)
|
[37] |
I. Boustani, Systematic ab initio investigation of bare boron clusters: mDetermination of the geometryand electronic structures of Bn(n= 2–14), Phys. Rev. B 55(24), 16426 (1997)
CrossRef
ADS
Google scholar
|
[38] |
I. Boustani, New quasi-planar surfaces of bare boron, Surf. Sci. 370(2–3), 355 (1997)
|
[39] |
K. C. Lau and R. Pandey, Stability and electronic properties of atomistically-engineered 2D boron sheets, J. Phys. Chem. C 111(7), 2906 (2007)
CrossRef
ADS
Google scholar
|
[40] |
K. C. Lau, R. Pati, R. Pandey, and A. C. Pineda, Firstprinciples study of the stability and electronic properties of sheets and nanotubes of elemental boron, Chem. Phys. Lett. 418(4–6), 549 (2006)
CrossRef
ADS
Google scholar
|
[41] |
I. Cabria, M. López, and J. Alonso, Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets, Nanotechnology 17(3), 778 (2006)
CrossRef
ADS
Google scholar
|
[42] |
H. Tang and S. Ismail-Beigi, Self-doping in boron sheets from first principles: A route to structural design of metal boride nanostructures, Phys. Rev. B 80(13), 134113 (2009)
CrossRef
ADS
Google scholar
|
[43] |
H. Tang and S. Ismail-Beigi, Novel precursors for boron nanotubes: The competition of two-center and threecenter bonding in boron sheets, Phys. Rev. Lett. 99(11), 115501 (2007)
CrossRef
ADS
Google scholar
|
[44] |
H. Tang and S. Ismail-Beigi, First-principles study of boron sheets and nanotubes, Phys. Rev. B 82(11), 115412 (2010)
CrossRef
ADS
Google scholar
|
[45] |
X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X. C. Zeng, Two-dimensional boron monolayer sheets, ACS Nano 6(8), 7443 (2012)
CrossRef
ADS
Google scholar
|
[46] |
E. S. Penev, S. Bhowmick, A. Sadrzadeh, and B. I. Yakobson, Polymorphism of two-dimensional boron, Nano Lett. 12(5), 2441 (2012)
CrossRef
ADS
Google scholar
|
[47] |
Y. Liu, E. S. Penev, and B. I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations, Angew. Chem. Int. Ed. 52(11), 3156 (2013)
CrossRef
ADS
Google scholar
|
[48] |
H. Liu, J. Gao, and J. Zhao, From boron cluster to twodimensional boron sheet on Cu(111) surface: Growth mechanism and hole formation, Sci. Rep. 3(1), 3238 (2013)
CrossRef
ADS
Google scholar
|
[49] |
L. Zhang, Q. Yan, S. Du, G. Su, and H. J. Gao, Boron sheet adsorbed on metal surfaces: Structures and electronic properties, J. Phys. Chem. C 116(34), 18202 (2012)
CrossRef
ADS
Google scholar
|
[50] |
B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)
CrossRef
ADS
Google scholar
|
[51] |
A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015)
CrossRef
ADS
Google scholar
|
[52] |
Q. Zhong, J. Zhang, P. Cheng, B. Feng, W. Li, S. Sheng, H. Li, S. Meng, L. Chen, and K. Wu, Metastable phases of 2D boron sheets on Ag(111), J. Phys. Condens. Matter 29(9), 095002 (2017)
CrossRef
ADS
Google scholar
|
[53] |
Z. Zhang, A. J. Mannix, Z. Hu, B. Kiraly, N. P. Guisinger, M. C. Hersam, and B. I. Yakobson, Substrate-induced nanoscale undulations of borophene on silver, Nano Lett. 16(10), 6622 (2016)
CrossRef
ADS
Google scholar
|
[54] |
Q. Zhong, L. Kong, J. Gou, W. Li, S. Sheng, S. Yang, P. Cheng, H. Li, K. Wu, and L. Chen, Synthesis of borophene nanoribbons on Ag(110) surface, arXiv: 1704.05603 (2017)
|
[55] |
Z. Zhang, Y. Yang, G. Gao, and B. I. Yakobson, Two- Dimensional Boron Monolayers Mediated by Metal Substrates, Angew. Chem. Int. Ed. 54(44), 13022 (2015)
CrossRef
ADS
Google scholar
|
[56] |
A. J. Mannix, B. Kiraly, M. C. Hersam, and N. P. Guisinger, Synthesis and chemistry of elemental 2D materials, Nature Rev. Chem. 1, 0014 (2017)
|
[57] |
Z. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional boron: Structures, properties and applications, Chem. Soc. Rev. 46(22), 6746 (2017)
CrossRef
ADS
Google scholar
|
[58] |
B. Feng, O. Sugino, R. Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, T. Iimori, H. Kim, Y. Hasegawa, H. Li, L. Chen, K. Wu, H. Kumigashira, F. Komori, T. C. Chiang, S. Meng, and I. Matsuda, Dirac fermions in borophene, Phys. Rev. Lett. 118(9), 096401 (2017)
CrossRef
ADS
Google scholar
|
[59] |
B. Feng, J. Zhang, S. Ito, M. Arita, C. Cheng, L. Chen, K. Wu, F. Komori, O. Sugino, and K. Miyamoto, Discovery of 2D anisotropic Dirac cones, Adv. Mater. 30(2),1704025 (2018)
CrossRef
ADS
Google scholar
|
[60] |
B. Feng, J. Zhang, R. Y. Liu, T. Iimori, C. Lian, H. Li, L. Chen, K. Wu, S. Meng, F. Komori, and I. Matsuda, Direct evidence of metallic bands in a monolayer boron sheet, Phys. Rev. B 94(4), 041408 (2016)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |