Vertically aligned γ-AlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption

Chen Yang, Ying Chen, Dan Liu, Jinfeng Wang, Cheng Chen, Jiemin Wang, Ye Fan, Shaoming Huang, Weiwei Lei

PDF(5862 KB)
PDF(5862 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 138101. DOI: 10.1007/s11467-018-0747-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Vertically aligned γ-AlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption

Author information +
History +

Abstract

Vertically aligned γ-AlOOH nanosheets (NSs) have been successfully fabricated on flexible Al foils via a solvothermal route without morphology-directing agents. Three different reaction temperature (25, 80, and 120 ◦C) and time (30 min, 45 min, and 24 h) are discussed for the growth period, which efficiently tune the density and size of the γ-AlOOH NSs. Meanwhile, the growth speed of the nanosheets confirms that dominant growth stage is seen in the initial 45 min. Furthermore, the interlayer of the γ-AlOOH NSs displays an average height of 140 nm and superhydrophilicity. By dynamic adsorption, the assynthesized γ-AlOOH NSs exhibit an outstanding NH3 adsorption capacity of up to 146 mg/g and stably excellent regeneration for 5 cycles. The mechanism of NH3 adsorption on the in-plane of the γ-AlOOH NSs is explained by the Lewis acid/base theory. The H-bond interactions among the NH3 molecules and the edge groups (-OH) further improve the capture ability of the nanosheets.

Keywords

γ-AlOOH nanosheets / NH3 adsorption / Lewis acid/base theory / H bonds interaction

Cite this article

Download citation ▾
Chen Yang, Ying Chen, Dan Liu, Jinfeng Wang, Cheng Chen, Jiemin Wang, Ye Fan, Shaoming Huang, Weiwei Lei. Vertically aligned γ-AlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption. Front. Phys., 2018, 13(4): 138101 https://doi.org/10.1007/s11467-018-0747-5

References

[1]
A. Qajar, M. Peer, M. R. Andalibi, R. Rajagopalan, and H. C. Foley, Enhanced ammonia adsorption on functionalized nanoporous carbons, Microporous Mesoporous Mater. 218, 15 (2015)
CrossRef ADS Google scholar
[2]
J. B. DeCoste, M. S. Jr Denny, G. W. Peterson, J. J. Mahle, and S. M. Cohen, Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption, Chem. Sci. 7(4), 2711 (2016)
CrossRef ADS Google scholar
[3]
T. Yan, T. X. Li, R. Z. Wang, and R. Jia, Experimental investigation on the ammonia adsorption and heat transfer characteristics of the packed multi-walled carbon nanotubes, Appl. Therm. Eng. 77, 20 (2015)
CrossRef ADS Google scholar
[4]
T. Yan, T. X. Li, H. Li, and R. Z. Wang, Experimental study of the ammonia adsorption characteristics on the composite sorbent of CaCl2 and multi-walled carbon nanotubes, Int. J. Refrig. 46, 165 (2014)
CrossRef ADS Google scholar
[5]
M. Seredych, J. A. Rossin, and T. J. Bandosz, Changes in graphite oxide texture and chemistry upon oxidation and reduction and their effect on adsorption of ammonia, Carbon 49(13), 4392 (2011)
CrossRef ADS Google scholar
[6]
Y. Chen, C. Y. Yang, X. Q. Wang, J. F. Yang, K. Ouyang, and J. P. Li, Kinetically controlled ammonia vapor diffusion synthesis of a Zn(ii) MOF and its H2O/NH3 adsorption properties, J. Mater. Chem. A 4(26), 10345 (2016)
CrossRef ADS Google scholar
[7]
D. P. Saha and S. G. Deng, Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177, J. Colloid Interface Sci. 348(2), 615 (2010)
CrossRef ADS Google scholar
[8]
A. A. Halim, H. A. Aziz, M. A. M. Johari, and K. S. Ariffin, Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment, Desalination 262(1–3), 31 (2010)
CrossRef ADS Google scholar
[9]
D. Saha and S. G. Deng, Characteristics of ammonia adsorption on activated alumina, J. Chem. Eng. Data 55(12), 5587 (2010)
CrossRef ADS Google scholar
[10]
D. Liu, W. W. Lei, S. Qin, K. D. Klika, and Y. Chen, Superior adsorption of pharmaceutical molecules by highly porous BN nanosheets, Phys. Chem. Chem. Phys. 18(1), 84 (2016)
CrossRef ADS Google scholar
[11]
W. W. Lei, H. Zhang, Y. Wu, B. Zhang, D. Liu, S. Qin, Z. W. Liu, L. M. Liu, Y. M. Ma, and Y. Chen, Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage,Nano Energy 6, 219 (2014)
CrossRef ADS Google scholar
[12]
C. Petit, L. L. Huang, J. Jagiello, J. Kenvin, K. E. Gubbins, and T. J. Bandosz, Toward understanding reactive adsorption of ammonia on Cu-MOF/graphite oxide nanocomposites, Langmuir 27(21), 13043 (2011)
CrossRef ADS Google scholar
[13]
C. Petit and T. J. Bandosz, Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: Analysis of surface interactions, Adv. Funct. Mater. 20(1), 111 (2010)
CrossRef ADS Google scholar
[14]
C. Petit and T. J. Bandosz, Synthesis, characterization, and ammonia adsorption properties of mesoporous metal-organic framework (MIL(Fe))-graphite oxide composites: Exploring the limits of materials fabrication, Adv. Funct. Mater. 21(11), 2108 (2011)
CrossRef ADS Google scholar
[15]
S. Kang, J. Chun, N. Park, S. M. Lee, H. J. Kim, and S. U. Son, Hydrophobic zeolites coated with microporous organic polymers: adsorption behavior of ammonia under humid conditions, Chem. Commun. 51(59), 11814 (2015)
CrossRef ADS Google scholar
[16]
Y. Corre, M. Seredych, and T. J. Bandosz, Analysis of the chemical and physical factors affecting reactive adsorption of ammonia on graphene/nanoporous carbon composites, Carbon 55, 176 (2013)
CrossRef ADS Google scholar
[17]
G. C. Li, Y. Q. Liu, D. Liu, L. H. Liu, and C. G. Liu, Synthesis of flower-like Boehmite (AlOOH) via a simple solvothermal process without surfactant, Mater. Res. Bull. 45(10), 1487 (2010)
CrossRef ADS Google scholar
[18]
Z. B. Shi, W. Q. Jiao, L. Chen, P. Wu, Y. M. Wang, and M. Y. He, Clean synthesis of hierarchically structured boehmite and g-alumina with a flower-like morphology, Microporous Mesoporous Mater. 224, 253 (2016)
CrossRef ADS Google scholar
[19]
O. V. Bakina, E. A. Glazkova, N. V. Svarovskaya, A. S. Lozhkomoev, E. G. Khorobraya, and S. G. Psakhie, International Conference on Physical Mesomechanics of Multilevel Systems 2014, 1623, 35 (2014)
[20]
J. C. Xiao, H. H. Ji, Z. Q. Shen, W. Y. Yang, C. Y. Guo, S. J. Wang, X. W. Zhang, R. Fu, and F. X. Ling, Self-assembly of flower-like g-AlOOH and g-Al2O3 with hierarchical nanoarchitectures and enhanced adsorption performance towards methyl orange, RSC Adv. 4(66), 35077 (2014)
CrossRef ADS Google scholar
[21]
A. S. Lozhkomoev, E. A. Glazkova, N. V. Svarovskaya, O. V. Bakina, S. O. Kazantsev, and M. I. Lerner, International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2015, 1683 (2015)
[22]
A. S. Lozhkomoev, E. A. Glazkova, O. V. Bakina, M. I. Lerner, I. Gotman, E. Y. Gutmanas, S. O. Kazantsev, and S. G. Psakhie, Synthesis of core–shell AlOOH hollow nanospheres by reacting Al nanoparticles with water, Nanotechnology 27(20), 205603 (2016)
CrossRef ADS Google scholar
[23]
Y. Y. Dong, Y. J. Liu, L. Y. Meng, B. Wang, M. G. Ma, and Y. Y. Li, Facile hydrothermal synthesis of Ag@AgCl@AlOOH hollow microspheres and their characterizations, Mater. Lett. 181, 204 (2016)
CrossRef ADS Google scholar
[24]
S. L. Liu, C. Y. Chen, Q. P. Liu, Y. W. Zhuo, D. Yuan, Z. H. Dai, and J. C. Bao, Two-dimensional porous g- AlOOH and g-Al2O3 nanosheets: Hydrothermal synthesis, formation mechanism and catalytic performance, RSC Adv. 5(88), 71728 (2015)
CrossRef ADS Google scholar
[25]
L. Zhang, and Y. J. Zhu, Microwave-assisted Solvothermal Synthesis of AlOOH hierarchically nanostructured microspheres and their transformation to g-Al2O3 with similar morphologies, J. Phys. Chem. C 112(43), 16764 (2008)
CrossRef ADS Google scholar
[26]
R. H. Sun, H. B. Zhang, J. Qu, H. Yao, J. Yao, and Z. Z. Yu, Supercritical carbon dioxide fluid assisted synthesis of hierarchical AlOOH@reduced graphene oxide hybrids for efficient removal of fluoride ions, Chem. Eng. J. 292, 174 (2016)
CrossRef ADS Google scholar
[27]
R. Kumar, M. Ehsan, and M. A. Barakat, Synthesis and characterization of carbon/AlOOH composite for adsorption of chromium(VI) from synthetic wastewater, J. Ind. Eng. Chem. 20(6), 4202 (2014)
CrossRef ADS Google scholar
[28]
R. Kumar, J. Rashid, and M. A. Barakat, Synthesis and characterization of a starch–AlOOH–FeS2 nanocomposite for the adsorption of congo red dye from aqueous solution, RSC Adv. 4(72), 38334 (2014)
CrossRef ADS Google scholar
[29]
J. R. Wen, M. H. Liu, and C. Y. Mou, Synthesis of curtain-like crumpled boehmite and g-alumina nanosheets, CrystEngComm 17(9), 1959 (2015)
CrossRef ADS Google scholar
[30]
Z. Tang, J. L. Liang, X. H. Li, J. F. Li, H. L. Guo, Y. Q. Liu, and C. G. Liu, Synthesis of flower-like Boehmite (g- AlOOH) via a one-step ionic liquid-assisted hydrothermal route, J. Solid State Chem. 202, 305 (2013)
CrossRef ADS Google scholar
[31]
G. J. Ji, M. M. Li, G. H. Li, G. M. Gao, H. F. Zou, S. C. Gan, and X. C. Xu, Hydrothermal synthesis of hierarchical micron flower-like g-AlOOH and g-Al2O3 superstructures from oil shale ash, Powder Technol. 215- 216, 54 (2012)
[32]
X. Y. Chen, H. S. Huh, and S. W. Lee, Hydrothermal synthesis of boehmite (γ-AlOOH) nanoplatelets and nanowires: pH-controlled morphologies, Nanotechnology 18, 285608 (2007)
CrossRef ADS Google scholar
[33]
K. H. Hu, Y. K. Cai, G. Q. Shao, and X. L. Cui, Synthesis and photocatalytic properties of nano-MoS2/AlOOH composite, React. Kinet. Mech. Catal. 103(1), 153 (2011)
CrossRef ADS Google scholar
[34]
J. X. Yang, J. J. Ma, and Y. W. Huang, Hydrothermal synthesis of monodisperse leaf-like boehmite nanosheets: Transformation from irregular to regular morphology, Frontier of Nanoscience and Technology, Vol. 694, 28 (2011)
CrossRef ADS Google scholar
[35]
Y. M. Sun, H. Wang, P. Li, X. Z. Duan, J. Xu, and Y. F. Han, Synthesis and identification of hierarchical g-AlOOH self-assembled by nanosheets with adjustable exposed facets, CrystEngComm 18(24), 4546 (2016)
CrossRef ADS Google scholar
[36]
G. C. Li, L. L. Guan, Y. Q. Liu, and C. G. Liu, Template-free solvothermal synthesis of 3D hierarchical nanostructured boehmite assembled by nanosheets, J. Phys. Chem. Solids 73(9), 1055 (2012)
CrossRef ADS Google scholar
[37]
Y. X. Zhang, Y. J. Ye, X. B. Zhou, Z. L. Liu, G. P. Zhu, D. C. Li, and X. H. Li, Monodispersed hollow aluminosilica microsphere@hierarchical g-AlOOH deposited with or without Fe(OH)3 nanoparticles for efficient adsorption of organic pollutants, J. Mater. Chem. A 4(3), 838 (2016)
CrossRef ADS Google scholar
[38]
R. W. Hicks and T. J. Pinnavaia, Nanoparticle assembly of mesoporous AlOOH (Boehmite), Chem. Mater. 15(1), 78 (2003)
CrossRef ADS Google scholar
[39]
Y. Cai, H. H. Huang, L. Wang, X. J. Zhang, Y. W. Yuan, R. Li, H. Wan, and G. F. Guan, Facile synthesis of pure phase g-AlOOH and g-Al2O3 nanofibers in a recoverable ionic liquid via a low temperature route, RSC Adv. 5(127), 104884 (2015)
CrossRef ADS Google scholar
[40]
X. Y. Chen, Z. H. Zhang, X. L. Li, and S. W. Lee, Controlled hydrothermal synthesis of colloidal boehmite (-AlOOH) nanorods and nanoflakes and their conversion into- Al2O3 nanocrystals, Solid State Commun. 145(7–8), 368 (2008)
CrossRef ADS Google scholar
[41]
S. Peng, X. J. Yang, D. Tian, and W. L. Deng, Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure, ACS Appl. Mater. Inter. 6(17), 15188 (2014)
CrossRef ADS Google scholar
[42]
S. Yamazoe, M. Naya, M. Shiota, T. Morikawa, A. Kubo, T. Tani, T. Hishiki, T. Horiuchi, M. Suematsu, and M. Kajimura, Large-area surface-enhanced Raman spectroscopy imaging of brain ischemia by gold nanoparticles grown on random nanoarrays of transparent boehmite, ACS Nano 8(6), 5622 (2014)
CrossRef ADS Google scholar
[43]
Z. Xu, J. Yu, J. Low, and M. Jaroniec, Microemulsionassisted synthesis of mesoporous aluminum oxyhydroxide nanoflakes for efficient removal of gaseous formaldehyde, ACS Appl. Mater. Inter. 6(3), 2111 (2014)
CrossRef ADS Google scholar
[44]
Z. J. Wang, Y. Tian, H. S. Fan, J. H. Gong, S. G. Yang, J. H. Ma, and J. Xu, Facile seed-assisted hydrothermal fabrication of g-AlOOH nanoflake films with superhydrophobicity, New J. Chem. 38(3), 1321 (2014)
CrossRef ADS Google scholar
[45]
Y. L. Feng, W. C. Lu, L. M. Zhang, X. H. Bao, B. H. Yue, Y. Iv, and X. F. Shang, One-step synthesis of hierarchical cantaloupe-like AlOOH superstructures via a hydrothermal route, Cryst. Growth Des. 8(4), 1426 (2008)
CrossRef ADS Google scholar
[46]
A. Alemi, Z. Hosseinpour, M. Dolatyari, and A. Bakhtiari, Boehmite (g-AlOOH) nanoparticles: Hydrothermal synthesis, characterization, pH-controlled morphologies, optical properties, and DFT calculations, Phys. Status Solidi B 249(6), 1264 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(5862 KB)

Accesses

Citations

Detail

Sections
Recommended

/