High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials
Andrea Gabrieli, Marco Sant, Saeed Izadi, Parviz Seifpanahi Shabane, Alexey V. Onufriev, Giuseppe B. Suffritti
High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials
Classical molecular dynamics simulations were performed to study the high-temperature (above 300 K) dynamic behavior of bulk water, specifically the behavior of the diffusion coefficient, hydrogen bond, and nearest-neighbor lifetimes. Two water potentials were compared: the recently proposed “globally optimal” point charge (OPC) model and the well-known TIP4P-Ew model. By considering the Arrhenius plots of the computed inverse diffusion coefficient and rotational relaxation constants, a crossover from Vogel–Fulcher–Tammann behavior to a linear trend with increasing temperature was detected atT*≈309 and T*≈285 K for the OPC and TIP4P-Ew models, respectively. Experimentally, the crossover point was previously observed atT*≈315±5 K. We also verified that for the coefficient of thermal expansion αP (T, P), the isobaric αP(T) curves cross at about the same T* as in the experiment. The lifetimes of water hydrogen bonds and of the nearest neighbors were evaluated and were found to cross nearT*, where the lifetimes are about 1 ps. For T<T*, hydrogen bonds persist longer than nearest neighbors, suggesting that the hydrogen bonding network dominates the water structure at T<T*, whereas for T>T*, water behaves more like a simple liquid. The fact that T* falls within the biologically relevant temperature range is a strong motivation for further analysis of the phenomenon and its possible consequences for biomolecular systems.
dynamic crossover / molecular dynamics / bulk liquid water / water models
[1] |
P.Ball, Water: Water an enduring mystery, Nature452(7185), 291 (2008)
CrossRef
ADS
Google scholar
|
[2] |
P.Gallo, K.Amann-Winkel, C. A.Angell , M. A.Anisimov, F.Caupin, C.Chakravarty , E.Lascaris, T.Loerting, A. Z.Panagiotopoulos , J.Russo, J. A.Sellberg, H. E.Stanley , H.Tanaka, C.Vega, L.Xu, and L. G. M.Pettersson, Water: A tale of two liquids, Chem. Rev. 116(13), 7463(2016)
CrossRef
ADS
Google scholar
|
[3] |
A.Nilssonand L. G. M. Pettersson, The structural origin of anomalous properties of liquid water, Nat. Commun. 6, 8998(2015)
CrossRef
ADS
Google scholar
|
[4] |
H. E.Stanley, Advances in Chemical Physics: Liquid Polymorphism, Vol. 152, John Wiley & Sons, 2013
CrossRef
ADS
Google scholar
|
[5] |
J. H.Simpsonand H. Y. Carr, Diffusion and nuclear spin relaxation in water, Phys. Rev.111(5), 1201(1958)
CrossRef
ADS
Google scholar
|
[6] |
F.Mallamace, C.Corsaro, and H. E.Stanley , A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep.2, 993(2012)
CrossRef
ADS
Google scholar
|
[7] |
F.Mallamace, C.Corsaro, D.Mallamace , C.Vasi, and H. E. Stanley, The thermodynamical response functions and the origin of the anomalous behavior of liquid water, Faraday Discuss. 167, 95(2013)
CrossRef
ADS
Google scholar
|
[8] |
F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, and H. E.Stanley , Thermodynamic properties of bulk and confined water, J. Chem. Phys. 141(18), 18C504(2014)
|
[9] |
H. R.Pruppacher, Self-Diffusion coefficient of supercooled water, J. Chem. Phys. 56(1), 101(1972)
CrossRef
ADS
Google scholar
|
[10] |
NIST Chemistry WebBook, 2008. http://webbook.nist.gov/chemistry/uid/
|
[11] |
F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, H. E.Stanley , and S. H.Chen, Some thermodynamical aspects of protein hydration water, J. Chem. Phys. 142(21), 215103(2015)
CrossRef
ADS
Google scholar
|
[12] |
R.Speedyand C.Angell, Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at –45 °C, J. Chem. Phys. 65(3), 851(1976)
CrossRef
ADS
Google scholar
|
[13] |
P. W.Bridgman, Water, in the liquid and five solid forms, under pressure, in: Proceedings of the American Academy of Arts and Sciences, pp 441–558, JSTOR, 1912
CrossRef
ADS
Google scholar
|
[14] |
G. S.Kell, Density, thermal expansivity, and compressibility of liquid water from 0°C to 150°C: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale, J. Chem. Eng. Data20(1), 97(1975)
CrossRef
ADS
Google scholar
|
[15] |
G.Kelland E.Whalley, Reanalysis of the density of liquid water in the range 0–150 °C and 0–1 kbar, J. Chem. Phys. 62(9), 3496(1975)
CrossRef
ADS
Google scholar
|
[16] |
C.Sorensen, Densities and partial molar volumes of supercooled aqueous solutions, J. Chem. Phys. 79(3), 1455(1983)
CrossRef
ADS
Google scholar
|
[17] |
D.Hareand C.Sorensen, Densities of supercooled H2O and D2O in 25μ glass capillaries, J. Chem. Phys. 84(9), 5085(1986)
CrossRef
ADS
Google scholar
|
[18] |
D.Hareand C.Sorensen, The density of supercooled water (II): Bulk samples cooled to the homogeneous nucleation limit, J. Chem. Phys. 87(8), 4840(1987)
CrossRef
ADS
Google scholar
|
[19] |
O.Mishima, Volume of supercooled water under pressure and the liquid-liquid critical point, J. Chem. Phys. 133(14), 144503(2010)
CrossRef
ADS
Google scholar
|
[20] |
W. D.Wilson, Speed of sound in distilled water as a function of temperature and pressure, J. Acoust. Soc. Am. 31(8), 1067(1959)
CrossRef
ADS
Google scholar
|
[21] |
R. C.Doughertyand L. N. Howard, Equilibrium structural model of liquid water: Evidence from heat capacity, spectra, density, and other properties, J. Chem. Phys. 109(17), 7379(1998)
CrossRef
ADS
Google scholar
|
[22] |
H.Vogel, The law of the relation between the viscosity of liquids and the temperature, Phys. Z. 22, 645(1921)
|
[23] |
G. S.Fulcher, Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8(6), 339(1925)
CrossRef
ADS
Google scholar
|
[24] |
G.Tammannand W.Hesse, The dependence of viscosity upon the temperature of supercooled liquids, Z. Anorg. Allg. Chem. 156, 245(1926)
CrossRef
ADS
Google scholar
|
[25] |
W. S.Price, H.Ide, and Y.Arata , Self-Diffusion of supercooled water to 238 K using PGSE NMR diffusion measurements, J. Phys. Chem. A103(4), 448(1999)
CrossRef
ADS
Google scholar
|
[26] |
D.Laageand J. T. Hynes, A molecular jump mechanism of water reorientation, Science311(5762), 832(2006)
CrossRef
ADS
Google scholar
|
[27] |
D.Laageand J. T. Hynes, On the molecular mechanism of water reorientation, J. Phys. Chem. B112(45), 14230(2008)
CrossRef
ADS
Google scholar
|
[28] |
G.Stirnemannand D.Laage, Direct evidence of angular jumps during water reorientation through twodimensional infrared anisotropy, J. Phys. Chem. Lett. 1(10), 1511(2010)
CrossRef
ADS
Google scholar
|
[29] |
D.Laage, G.Stirnemann, F.Sterpone , and J. T.Hynes, Water jump reorientation: from theoretical prediction to experimental observation, Acc. Chem. Res. 45(1), 53(2012)
CrossRef
ADS
Google scholar
|
[30] |
D.Laage, G.Stirnemann, F.Sterpone , R.Rey, and J. T. Hynes, Reorientation and allied dynamics in water and aqueous solutions, Annu. Rev. Phys. Chem. 62(1), 395(2011)
CrossRef
ADS
Google scholar
|
[31] |
L. B.Skinner, C. J.Benmore, J. C.Neuefeind , and J. B.Parise , The structure of water around the compressibility minimum, J. Chem. Phys. 141(21), 214507(2014)
CrossRef
ADS
Google scholar
|
[32] |
D.Schlesinger, K. T.Wikfeldt, L. B.Skinner , C. J.Benmore, A.Nilsson, and L. G. M.Pettersson , The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water, J. Chem. Phys. 145(8), 084503(2016)
CrossRef
ADS
Google scholar
|
[33] |
F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, and G.Dugo , The role of water in protein’s behavior: The two dynamical crossovers studied by NMR and FTIR techniques, Comput. Struct. Biotechnol. J. 13, 33(2015)
CrossRef
ADS
Google scholar
|
[34] |
P.Demontis, J.Gulín-González, M.Masia, M.Sant, and G. B. Suffritti, The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study, J. Chem. Phys. 142(24), 244507(2015)
CrossRef
ADS
Google scholar
|
[35] |
H. W.Horn, W. C.Swope, J. W.Pitera , J. D.Madura, T. J.Dick, G. L.Hura, and T. Head-Gordon, Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew, J. Chem. Phys. 120(20), 9665(2004)
CrossRef
ADS
Google scholar
|
[36] |
P.Demontis, J.Gulín-González, M.Masia, and G. B.Suffritti , The behaviour of water confined in zeolites: molecular dynamics simulations versus experiment, J. Phys. Condens. Matter22(28), 284106(2010)
CrossRef
ADS
Google scholar
|
[37] |
P.Cicu, P.Demontis, S.Spanu , G. B.Suffritti, and A. Tilocca, Electric-field-dependent empirical potentials for molecules and crystals: A first application to flexible water molecule adsorbed in zeolites, J. Chem. Phys. 112(19), 8267(2000)
CrossRef
ADS
Google scholar
|
[38] |
S.Izadi, R.Anandakrishnan, and A. V.Onufriev , Building water models: A different approach, J. Phys. Chem. Lett. 5(21), 3863(2014)
CrossRef
ADS
Google scholar
|
[39] |
R.Anandakrishnan, C. Baker, S.Izadi , and A. V.Onufriev , Point charges optimally placed to represent the multipole expansion of charge distributions, PLoS ONE8, e67715(2013)
CrossRef
ADS
Google scholar
|
[40] |
C.Bergonzoand T. E. III Cheatham, Improved force field parameters lead to a better description of RNA structure, J. Chem. Theory Comput. 11(9), 3969(2015)
CrossRef
ADS
Google scholar
|
[41] |
K.Gao, J.Yin, N. M.Henriksen , A. T.Fenley, and M. K. Gilson, Binding enthalpy calculations for a neutral hostguest pair yield widely divergent salt effects across water models, J. Chem. Theory Comput. 11(10), 4555(2015)
CrossRef
ADS
Google scholar
|
[42] |
C. N.Nguyen, T.Kurtzman, and M. K.Gilson , Spatial decomposition of translational water-water correlation entropy in binding pockets, J. Chem. Theory Comput. 12(1), 414(2016)
CrossRef
ADS
Google scholar
|
[43] |
F.Häseand M.Zacharias, Free energy analysis and mechanism of base pair stacking in nicked DNA, Nucleic Acids Res. 44(15), 7100(2016)
CrossRef
ADS
Google scholar
|
[44] |
A.Mukhopadhyay, I. S. Tolokh, and A. V.Onufriev , Accurate evaluation of charge asymmetry in aqueous solvation, J. Phys. Chem. B119(20), 6092(2015)
CrossRef
ADS
Google scholar
|
[45] |
J. C.Phillips, R.Braun, W.Wang, J. Gumbart, E.Tajkhorshid , E.Villa, C.Chipot, R. D.Skeel , L.Kale, and K.Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26(16), 1781(2005)
CrossRef
ADS
Google scholar
|
[46] |
I. C.Yehand G.Hummer, System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions, J. Phys. Chem. B108(40), 15873(2004)
CrossRef
ADS
Google scholar
|
[47] |
R. G.Gordon, Advances in Magnetic Resonance, Vol. 3, p. 1, New York: Academic Press Inc., 1968
CrossRef
ADS
Google scholar
|
[48] |
A. Y.Zasetsky, Dielectric relaxation in liquid water: Two fractions or two dynamics? Phys. Rev. Lett. 107(11), 117601(2011)
CrossRef
ADS
Google scholar
|
[49] |
C. J.Fecko, J. J.Loparo, S. T.Roberts , and A.Tokmakoff , Local hydrogen bonding dynamics and collective reorganization in water: Ultrafast infrared spectroscopy of HOD/D2O, J. Chem. Phys. 122(5), 054506(2005)
CrossRef
ADS
Google scholar
|
[50] |
J. J.Loparo, S. T.Roberts, and A.Tokmakoff , Multidimensional infrared spectroscopy of water (I): Vibrational dynamics in two-dimensional IR line shapes, J. Chem. Phys. 125(19), 194521(2006)
CrossRef
ADS
Google scholar
|
[51] |
J. J.Loparo, S. T.Roberts, and A.Tokmakoff , Multidimensional infrared spectroscopy of water (II): Hydrogen bond switching dynamics, J. Chem. Phys. 125(19), 194522(2006)
CrossRef
ADS
Google scholar
|
[52] |
J.Stenger, D.Madsen, P.Hamm , E. T.Nibbering, and T. Elsaesser, A photon echo peak shift study of liquid water, J. Phys. Chem. A106(10), 2341(2002)
CrossRef
ADS
Google scholar
|
[53] |
M.Cowan, B. D.Bruner, N.Huse , J.Dwyer, B.Chugh, E.Nibbering , T.Elsaesser, and R.Miller, Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O, Nature434(7030), 199(2005)
CrossRef
ADS
Google scholar
|
[54] |
A.Luzarand D.Chandler, Hydrogen-bond kinetics in liquid water, Nature379(6560), 55(1996)
CrossRef
ADS
Google scholar
|
[55] |
A.Luzarand D.Chandler, Effect of environment on hydrogen bond dynamics in liquid water, Phys. Rev. Lett. 76(6), 928(1996)
CrossRef
ADS
Google scholar
|
[56] |
F. W.Starr, J. K.Nielsen, and H. E.Stanley , Fast and slow dynamics of hydrogen bonds in liquid water, Phys. Rev. Lett. 82(11), 2294(1999)
CrossRef
ADS
Google scholar
|
[57] |
F. W.Starr, J. K.Nielsen, and H. E.Stanley , Hydrogenbond dynamics for the extended simple point-charge model of water, Phys. Rev. E62(1), 579(2000)
CrossRef
ADS
Google scholar
|
[58] |
A.Luzar, Resolving the hydrogen bond dynamics conundrum, J. Chem. Phys. 113(23), 10663(2000)
CrossRef
ADS
Google scholar
|
[59] |
A.Luzar, Extent of inter-hydrogen bond correlations in water: Temperature effect, Chem. Phys. 258(2–3), 267(2000)
|
[60] |
V.Voloshinand Y. I. Naberukhin, Hydrogen bond lifetime distributions in computer simulated water, J. Struct. Chem. 50(1), 78(2009)
CrossRef
ADS
Google scholar
|
[61] |
H.Martinianoand N.Galamba, Insights on hydrogenbond lifetimes in liquid and supercooled water, J. Phys. Chem. B117(50), 16188(2013)
CrossRef
ADS
Google scholar
|
[62] |
B.Mukherjee, Microscopic origin of temporal heterogeneities in translational dynamics of liquid water, J. Chem. Phys. 143(5), 054503(2015)
CrossRef
ADS
Google scholar
|
[63] |
O.Condeand J.Teixeira, Hydrogen bond dynamics in water studied by depolarized Rayleigh scattering, J. Phys. 44(4), 525(1983)
CrossRef
ADS
Google scholar
|
[64] |
J.Teixeira, M. C.Bellissent-Funel, S. H.Chen , and A. J.Dianoux , Experimental determination of the nature of diffusive motions of water molecules at low temperatures, Phys. Rev. A31(3), 1913(1985)
CrossRef
ADS
Google scholar
|
[65] |
C.Fecko, J.Eaves, J.Loparo, A. Tokmakoff, and P.Geissler , Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water, Science301(5640), 1698(2003)
CrossRef
ADS
Google scholar
|
[66] |
D.Laage, Reinterpretation of the liquid water quasielastic neutron scattering spectra based on a nondiffusive jump reorientation mechanism, J. Phys. Chem. B113(9), 2684(2009)
CrossRef
ADS
Google scholar
|
[67] |
R.Kumar, J.Schmidt, and J.Skinner , Hydrogen bonding definitions and dynamics in liquid water, J. Chem. Phys.126(20), 204107(2007)
CrossRef
ADS
Google scholar
|
[68] |
D.Prada-Gracia, R. Shevchuk, and F.Rao , The quest for self-consistency in hydrogen bond definitions, J. Chem. Phys. 139(8), 084501(2013)
CrossRef
ADS
Google scholar
|
[69] |
A.Ozkanlar, T.Zhou, and A. E.Clark , Towards a unified description of the hydrogen bond network of liquid water: A dynamics based approach, J. Chem. Phys. 141(21), 214107(2014)
CrossRef
ADS
Google scholar
|
[70] |
P.Wernet, D.Nordlund, U.Bergmann , M.Cavalleri, M.Odelius, H.Ogasawara , L. Å.Näslund , T. K.Hirsch, L.Ojamäe, P.Glatzel , L. G. M.Pettersson, and A. Nilsson, The structure of the first coordination shell in liquid water, Science304(5673), 995(2004)
CrossRef
ADS
Google scholar
|
[71] |
R. H.Henchmanand S. J. Irudayam, Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water, J. Phys. Chem. B114(50), 16792(2010)
CrossRef
ADS
Google scholar
|
[72] |
J.Jonas, T.DeFries, and D.Wilbur , Molecular motions in compressed liquid water, J. Chem. Phys.65(2), 582(1976)
CrossRef
ADS
Google scholar
|
[73] |
J.Ropp, C.Lawrence, T.Farrar , and J.Skinner, Rotational motion in liquid water is anisotropic: a nuclear magnetic resonance and molecular dynamics simulation study, J. Am. Chem. Soc. 123(33), 8047(2001)
CrossRef
ADS
Google scholar
|
[74] |
E. H.Hardy, A.Zygar, M. D.Zeidler , M.Holz, and F. D. Sacher, Isotope effect on the translational and rotational motion in liquid water and ammonia,J. Chem. Phys. 114(7), 3174(2001)
CrossRef
ADS
Google scholar
|
[75] |
R.Ludwig, F.Weinhold, and T. C.Farrar , Experimental and theoretical determination of the temperature dependence of deuteron and oxygen quadrupole coupling constants of liquid water, J. Chem. Phys. 103(16), 6941(1995)
CrossRef
ADS
Google scholar
|
[76] |
J. A.Sellberg, C.Huang, T. A.McQueen , N. D.Loh, H.Laksmono, et al., Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature510(7505), 381(2014)
CrossRef
ADS
Google scholar
|
[77] |
C.Angelland F.Franks, Water: A Comprehensive Treatise, Vol. 7, New York: Plenum, 1982
|
[78] |
H. E.Stanleyand O.Mishima, The relationship between liquid, supercooled and glassy water, Nature396(6709), 329(1998)
CrossRef
ADS
Google scholar
|
[79] |
L.Liu, S. H.Chen, A.Faraone, C. W. Yen, and C. Y.Mou , Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water, Phys. Rev. Lett. 95(11), 117802(2005)
CrossRef
ADS
Google scholar
|
[80] |
S. V.Lishchuk, N. P.Malomuzh, and P. V.Makhlaichuk , Why thermodynamic properties of normal and heavy water are similar to those of argon-like liquids? Phys. Lett. A374(19–20), 2084(2010)
CrossRef
ADS
Google scholar
|
[81] |
A.Fisenko, N.Malomuzh, and A.Oleynik , To what extent are thermodynamic properties of water argonlike? Chem. Phys. Lett. 450(4–6), 297(2008)
CrossRef
ADS
Google scholar
|
[82] |
S.Izadi, B.Aguilar, and A. V.Onufriev , Proteinligand electrostatic binding free energies from explicit and implicit solvation, J. Chem. Theory Comput. 11(9), 4450(2015)
CrossRef
ADS
Google scholar
|
[83] |
D.Nayarand C.Chakravarty, Sensitivity of local hydration behaviour and conformational preferences of peptides to choice of water model, Phys. Chem. Chem. Phys. 16(21), 10199(2014)
CrossRef
ADS
Google scholar
|
[84] |
R. B.Bestand J.Mittal, Protein simulations with an optimized water model: Cooperative helix formation and temperature-induced unfolded state collapse, J. Phys. Chem. B114(46), 14916(2010)
CrossRef
ADS
Google scholar
|
[85] |
R. B.Bestand J.Mittal, Free-energy landscape of the gb1 hairpin in all-atom explicit solvent simulations with different force fields: Similarities and differences, Proteins79(4), 1318(2011)
CrossRef
ADS
Google scholar
|
[86] |
P.Florová, P. Sklenovský, P.Banáš, and M.Otyepka , Explicit water models affect the specific solvation and dynamics of unfolded peptides while the conformational behavior and flexibility of folded peptides remain intact, J. Chem. Theory Comput. 6(11), 3569(2010)
CrossRef
ADS
Google scholar
|
[87] |
H. E.Stanley, S. V.Buldyrev, G.Franzese , N.Giovambattista, and F. W. Starr, Static and dynamic heterogeneities in water, Philosophical Transactions of the Royal Society of London A363(1827), 509(2005)
|
[88] |
A.Nilssonand L.Pettersson, Perspective on the structure of liquid water, Chem. Phys. 389(1–3), 1 (2011)
|
[89] |
D.Prada-Gracia, R. Shevchuk, P.Hamm , and F.Rao, Towards a microscopic description of the free-energy landscape of water, J. Chem. Phys. 137(14), 144504(2012)
CrossRef
ADS
Google scholar
|
[90] |
G. C.Picasso, D. C.Malaspina, M. A.Carignano , and I.Szleifer, Cooperative dynamic and diffusion behavior above and below the dynamical crossover of supercooled water, J. Chem. Phys. 139(4), 044509(2013)
CrossRef
ADS
Google scholar
|
[91] |
J. A.Sellberg, S.Kaya, V. H.Segtnan , C.Chen, T.Tyliszczak, H.Ogasawara , D.Nordlund, L. G. M. Pettersson, and A.Nilsson,Comparison of X-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section, J. Chem. Phys. 141(3), 034507(2014)
CrossRef
ADS
Google scholar
|
[92] |
E.Duboué-Dijon and D.Laage, Characterization of the local structure in liquid water by various order parameters, J. Phys. Chem. B119(26), 8406(2015)
CrossRef
ADS
Google scholar
|
[93] |
R. S.Singh, J. W.Biddle, P. G.Debenedetti , and M. A.Anisimov , Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water, J. Chem. Phys. 144(14), 144504(2016)
CrossRef
ADS
Google scholar
|
[94] |
Y.Xu, N. G.Petrik, R. S.Smith , B. D.Kay, and G. A. Kimmel, Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K, Proc. Natl. Acad. Sci. USA113(52), 14921(2016)
CrossRef
ADS
Google scholar
|
[95] |
K. A.Jackson, Kinetic Processes: Crystal Growth, Diffusion, and Phase Transitions in Materials, Wiley-VCH Verlag GmbH & Co. KGaA, 2005
|
[96] |
W. L.Jorgensen, J. Chandrasekhar, J. D.Madura, R. W.Impey , and M. L.Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926(1983)
CrossRef
ADS
Google scholar
|
[97] |
J. L. F.Abascaland C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys. 123(23), 234505(2005)
CrossRef
ADS
Google scholar
|
[98] |
M. D.Marzio, G.Camisasca, M.Rovere , and P.Gallo, Fragile-to-strong crossover in supercooled water: A comparison between TIP4P and TIP4P/2005 models, Nuovo Cim. 39(C), 302(2016)
|
/
〈 | 〉 |