Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium

Hongwei Xiong

PDF(250 KB)
PDF(250 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (4) : 100401. DOI: 10.1007/s11467-015-0478-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium

Author information +
History +

Abstract

We consider the gravitational effect of quantum wave packets when quantum mechanics, gravity, and thermodynamics are simultaneously considered. Under the assumption of a thermodynamic origin of gravity, we propose a general equation to describe the gravitational effect of quantum wave packets. In the classical limit, this equation agrees with Newton’s law of gravitation. For quantum wave packets, however, it predicts a repulsive gravitational effect. We propose an experimental scheme using superfluid helium to test this repulsive gravitational effect. Our studies show that, with present technology such as superconducting gravimetry and cold atom interferometry, tests of the repulsive gravitational effect for superfluid helium are within experimental reach.

Graphical abstract

Keywords

gravitational effect of quantum wave packet / precision measurement / cold atoms

Cite this article

Download citation ▾
Hongwei Xiong. Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium. Front. Phys., 2015, 10(4): 100401 https://doi.org/10.1007/s11467-015-0478-9

References

[1]
S. Hawking, Black hole explosions? Nature 248(5443), 30 (1974)
CrossRef ADS Google scholar
[2]
G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and S. Sarkar, Tests of quantum gravity from observations of γ-ray bursts, Nature 393(6687), 763 (1998)
CrossRef ADS Google scholar
[3]
U. Jacob and T. Piran, Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation, Nat. Phys. 3(2), 87 (2007)
CrossRef ADS Google scholar
[4]
I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim, and C. Brukner, Probing Planck-scale physics with quantum optics, Nat. Phys. 8(5), 393 (2012)
CrossRef ADS Google scholar
[5]
R. J. Adler, H. Mueller, and M. L. Perl, A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry, Int. J. Mod. Phys. A 26(29), 4959 (2011)
CrossRef ADS Google scholar
[6]
C. J. Hogan, Measurement of quantum fluctuations in geometry, Phys. Rev. D 77(10), 104031 (2008)
CrossRef ADS Google scholar
[7]
C. J. Hogan and M. G. Jackson, Holographic geometry and noise in matrix theory, Phys. Rev. D 79(12), 124009 (2009)
CrossRef ADS Google scholar
[8]
T. Jacobson, Thermodynamics of spacetime: The Einstein equation of state, Phys. Rev. Lett. 75(7), 1260 (1995)
CrossRef ADS Google scholar
[9]
J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7(8), 2333 (1973)
CrossRef ADS Google scholar
[10]
J. M. Bardeen, B. Carter, and S. W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31(2), 161 (1973)
CrossRef ADS Google scholar
[11]
S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43(3), 199 (1975)
CrossRef ADS Google scholar
[12]
P. C. W. Davies, Scalar production in Schwarzschild and Rindler metrics, J. Phys. A 8(4), 609 (1975)
CrossRef ADS Google scholar
[13]
W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14(4), 870 (1976)
CrossRef ADS Google scholar
[14]
T. Padmanabhan, Thermodynamical aspects of gravity: New insights, Rep. Prog. Phys. 73(4), 046901 (2010)
CrossRef ADS Google scholar
[15]
See, e.g., R. G. Cai, L. M. Cao, and N. Ohta, Friedmann equations from entropic force, Phys. Rev. D 81, 061501(R) (2010)
[16]
T. Padmanabhan, Surface density of spacetime degrees of freedom from equipartition law in theories of gravity, Phys. Rev. D 81(12), 124040 (2010)
CrossRef ADS Google scholar
[17]
F. W. Shu and Y. G. Gong, Equipartition of energy and the first law of thermodynamics at the apparent horizon, Int. J. Mod. Phys. D 20(04), 553 (2011)
CrossRef ADS Google scholar
[18]
M. Li and Y. Wang, Quantum UV/IR relations and holographic dark energy from entropic force, Phys. Lett. B 687(2-3), 243 (2010)
CrossRef ADS Google scholar
[19]
T. W. Wang, Coulomb force as an entropic force, Phys. Rev. D 81(10), 104045 (2010)
CrossRef ADS Google scholar
[20]
P. Nicolini, Entropic force, noncommutative gravity, and ungravity, Phys. Rev. D 82(4), 044030 (2010)
CrossRef ADS Google scholar
[21]
Y. F. Cai and E. N. Saridakis, Inflation in entropic cosmology: Primordial perturbations and non-Gaussianities, Phys. Lett. B 697(4), 280 (2011)
CrossRef ADS Google scholar
[22]
R. Banerjee and B. R. Majhi, Statistical origin of gravity, Phys. Rev. D 81(12), 124006 (2010)
CrossRef ADS Google scholar
[23]
L. Modesto and A. Randono, Entropic corrections to Newton’s law, arXiv:1003.1998 (2010)
[24]
J. W. Lee, On the origin of entropic gravity and inertia, Found. Phys. 42(9), 1153 (2012)
CrossRef ADS Google scholar
[25]
M. A. Santos and I. V. Vancea, Entropic law of force, emergent gravity and the uncertainty principle, Mod. Phys. Lett. A 27, 1250012 (2012), arXiv: 1002.2454
CrossRef ADS Google scholar
[26]
M. R. Setare and D. Momeni, Time varying gravitational constant G via entropic force, Commum. Theor. Phys. 56(4), 691 (2011)
CrossRef ADS Google scholar
[27]
E. P. Verlinde, On the origin of gravity and the laws of Newton, J. High Energy Phys. 04, 029 (2011)
[28]
A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116(3), 1009 (1998)
CrossRef ADS Google scholar
[29]
S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and T. S. C. Project, Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517(2), 565 (1999)
CrossRef ADS Google scholar
[30]
P. J. E. Peebles and B. Ratra, The cosmological constant and dark energy, Rev. Mod. Phys. 75(2), 559 (2003)
CrossRef ADS Google scholar
[31]
A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Optics and interferometry with atoms and molecules, Rev. Mod. Phys. 81(3), 1051 (2009)
CrossRef ADS Google scholar
[32]
N. Poli, F. Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli, and G. M. Tino, Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter, Phys. Rev. Lett. 106(3), 038501 (2011)
CrossRef ADS Google scholar
[33]
P. Cladé, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, and F. Biraben, A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave, Europhys. Lett. 71(5), 730 (2005)
CrossRef ADS Google scholar
[34]
G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, Longlived Bloch oscillations with Bosonic Sr atoms and application to gravity measurement at the micrometer scale, Phys. Rev. Lett. 97(6), 060402 (2006)
CrossRef ADS Google scholar
[35]
F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, Quantum sensor for atomsurface interactions below 10 μm, Phys. Rev. A 79(1), 013409 (2009)
CrossRef ADS Google scholar
[36]
E. Hoskinson, Y. Sato, and R. Packard, Superfluid He4 interferometer operating near, Phys. Rev. B 74, 100509(R) (2006)
[37]
T. M. Niebauer, G. S. Sasagawa, J. E. Faller, R. Hilt, and F. Klopping, A new generation of absolute gravimeters, Metrologia 32(3), 159 (1995)
CrossRef ADS Google scholar
[38]
G. d’Agostino, S. Desogus, A. Germak, C. Origlia, D. Quagliotti, G. Berrino, G. Corrado, V. d’Errico, and G. Ricciardi, The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology, Ann. Geophys. 51, 39 (2008)
[39]
S. Svitlov, P. Maslyk, C. Rothleitner, H. Hu, and L. J. Wang, Comparison of three digital fringe signal processing methods in a ballistic free-fall absolute gravimeter, Metrologia 47(6), 677 (2010)
CrossRef ADS Google scholar
[40]
W. A. Prothero and J. Goodkind, A superconducting gravimeter, Rev. Sci. Instrum. 39(9), 1257 (1968)
CrossRef ADS Google scholar
[41]
J. Goodkind, The superconducting gravimeter, Rev. Sci. Instrum. 70(11), 4131 (1999)
CrossRef ADS Google scholar
[42]
H. J. Paik, Superconducting tunable-diaphragm transducer for sensitive acceleration measurements, J. Appl. Phys. 47(3), 1168 (1976)
CrossRef ADS Google scholar
[43]
M. V. Moody and H. J. Paik, Gauss’s law test of gravity at short range, Phys. Rev. Lett. 70(9), 1195 (1993)
CrossRef ADS Google scholar
[44]
S. Kachru, R. Kallosh, A. Linde, and S. P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68(4), 046005 (2003)
CrossRef ADS Google scholar
[45]
R. Penrose, Twistor algebra, J. Math. Phys. 8(2), 345 (1967)
CrossRef ADS Google scholar
[46]
L. Smolin, Newtonian gravity in loop quantum gravity, arXiv: 1001.3668 (2010)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(250 KB)

Accesses

Citations

Detail

Sections
Recommended

/