Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium
Hongwei Xiong
Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium
We consider the gravitational effect of quantum wave packets when quantum mechanics, gravity, and thermodynamics are simultaneously considered. Under the assumption of a thermodynamic origin of gravity, we propose a general equation to describe the gravitational effect of quantum wave packets. In the classical limit, this equation agrees with Newton’s law of gravitation. For quantum wave packets, however, it predicts a repulsive gravitational effect. We propose an experimental scheme using superfluid helium to test this repulsive gravitational effect. Our studies show that, with present technology such as superconducting gravimetry and cold atom interferometry, tests of the repulsive gravitational effect for superfluid helium are within experimental reach.
gravitational effect of quantum wave packet / precision measurement / cold atoms
[1] |
S. Hawking, Black hole explosions? Nature 248(5443), 30 (1974)
CrossRef
ADS
Google scholar
|
[2] |
G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and S. Sarkar, Tests of quantum gravity from observations of γ-ray bursts, Nature 393(6687), 763 (1998)
CrossRef
ADS
Google scholar
|
[3] |
U. Jacob and T. Piran, Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation, Nat. Phys. 3(2), 87 (2007)
CrossRef
ADS
Google scholar
|
[4] |
I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim, and C. Brukner, Probing Planck-scale physics with quantum optics, Nat. Phys. 8(5), 393 (2012)
CrossRef
ADS
Google scholar
|
[5] |
R. J. Adler, H. Mueller, and M. L. Perl, A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry, Int. J. Mod. Phys. A 26(29), 4959 (2011)
CrossRef
ADS
Google scholar
|
[6] |
C. J. Hogan, Measurement of quantum fluctuations in geometry, Phys. Rev. D 77(10), 104031 (2008)
CrossRef
ADS
Google scholar
|
[7] |
C. J. Hogan and M. G. Jackson, Holographic geometry and noise in matrix theory, Phys. Rev. D 79(12), 124009 (2009)
CrossRef
ADS
Google scholar
|
[8] |
T. Jacobson, Thermodynamics of spacetime: The Einstein equation of state, Phys. Rev. Lett. 75(7), 1260 (1995)
CrossRef
ADS
Google scholar
|
[9] |
J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7(8), 2333 (1973)
CrossRef
ADS
Google scholar
|
[10] |
J. M. Bardeen, B. Carter, and S. W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31(2), 161 (1973)
CrossRef
ADS
Google scholar
|
[11] |
S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43(3), 199 (1975)
CrossRef
ADS
Google scholar
|
[12] |
P. C. W. Davies, Scalar production in Schwarzschild and Rindler metrics, J. Phys. A 8(4), 609 (1975)
CrossRef
ADS
Google scholar
|
[13] |
W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14(4), 870 (1976)
CrossRef
ADS
Google scholar
|
[14] |
T. Padmanabhan, Thermodynamical aspects of gravity: New insights, Rep. Prog. Phys. 73(4), 046901 (2010)
CrossRef
ADS
Google scholar
|
[15] |
See, e.g., R. G. Cai, L. M. Cao, and N. Ohta, Friedmann equations from entropic force, Phys. Rev. D 81, 061501(R) (2010)
|
[16] |
T. Padmanabhan, Surface density of spacetime degrees of freedom from equipartition law in theories of gravity, Phys. Rev. D 81(12), 124040 (2010)
CrossRef
ADS
Google scholar
|
[17] |
F. W. Shu and Y. G. Gong, Equipartition of energy and the first law of thermodynamics at the apparent horizon, Int. J. Mod. Phys. D 20(04), 553 (2011)
CrossRef
ADS
Google scholar
|
[18] |
M. Li and Y. Wang, Quantum UV/IR relations and holographic dark energy from entropic force, Phys. Lett. B 687(2-3), 243 (2010)
CrossRef
ADS
Google scholar
|
[19] |
T. W. Wang, Coulomb force as an entropic force, Phys. Rev. D 81(10), 104045 (2010)
CrossRef
ADS
Google scholar
|
[20] |
P. Nicolini, Entropic force, noncommutative gravity, and ungravity, Phys. Rev. D 82(4), 044030 (2010)
CrossRef
ADS
Google scholar
|
[21] |
Y. F. Cai and E. N. Saridakis, Inflation in entropic cosmology: Primordial perturbations and non-Gaussianities, Phys. Lett. B 697(4), 280 (2011)
CrossRef
ADS
Google scholar
|
[22] |
R. Banerjee and B. R. Majhi, Statistical origin of gravity, Phys. Rev. D 81(12), 124006 (2010)
CrossRef
ADS
Google scholar
|
[23] |
L. Modesto and A. Randono, Entropic corrections to Newton’s law, arXiv:1003.1998 (2010)
|
[24] |
J. W. Lee, On the origin of entropic gravity and inertia, Found. Phys. 42(9), 1153 (2012)
CrossRef
ADS
Google scholar
|
[25] |
M. A. Santos and I. V. Vancea, Entropic law of force, emergent gravity and the uncertainty principle, Mod. Phys. Lett. A 27, 1250012 (2012), arXiv: 1002.2454
CrossRef
ADS
Google scholar
|
[26] |
M. R. Setare and D. Momeni, Time varying gravitational constant G via entropic force, Commum. Theor. Phys. 56(4), 691 (2011)
CrossRef
ADS
Google scholar
|
[27] |
E. P. Verlinde, On the origin of gravity and the laws of Newton, J. High Energy Phys. 04, 029 (2011)
|
[28] |
A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116(3), 1009 (1998)
CrossRef
ADS
Google scholar
|
[29] |
S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and T. S. C. Project, Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517(2), 565 (1999)
CrossRef
ADS
Google scholar
|
[30] |
P. J. E. Peebles and B. Ratra, The cosmological constant and dark energy, Rev. Mod. Phys. 75(2), 559 (2003)
CrossRef
ADS
Google scholar
|
[31] |
A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Optics and interferometry with atoms and molecules, Rev. Mod. Phys. 81(3), 1051 (2009)
CrossRef
ADS
Google scholar
|
[32] |
N. Poli, F. Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli, and G. M. Tino, Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter, Phys. Rev. Lett. 106(3), 038501 (2011)
CrossRef
ADS
Google scholar
|
[33] |
P. Cladé, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, and F. Biraben, A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave, Europhys. Lett. 71(5), 730 (2005)
CrossRef
ADS
Google scholar
|
[34] |
G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, Longlived Bloch oscillations with Bosonic Sr atoms and application to gravity measurement at the micrometer scale, Phys. Rev. Lett. 97(6), 060402 (2006)
CrossRef
ADS
Google scholar
|
[35] |
F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, Quantum sensor for atomsurface interactions below 10 μm, Phys. Rev. A 79(1), 013409 (2009)
CrossRef
ADS
Google scholar
|
[36] |
E. Hoskinson, Y. Sato, and R. Packard, Superfluid
|
[37] |
T. M. Niebauer, G. S. Sasagawa, J. E. Faller, R. Hilt, and F. Klopping, A new generation of absolute gravimeters, Metrologia 32(3), 159 (1995)
CrossRef
ADS
Google scholar
|
[38] |
G. d’Agostino, S. Desogus, A. Germak, C. Origlia, D. Quagliotti, G. Berrino, G. Corrado, V. d’Errico, and G. Ricciardi, The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology, Ann. Geophys. 51, 39 (2008)
|
[39] |
S. Svitlov, P. Maslyk, C. Rothleitner, H. Hu, and L. J. Wang, Comparison of three digital fringe signal processing methods in a ballistic free-fall absolute gravimeter, Metrologia 47(6), 677 (2010)
CrossRef
ADS
Google scholar
|
[40] |
W. A. Prothero and J. Goodkind, A superconducting gravimeter, Rev. Sci. Instrum. 39(9), 1257 (1968)
CrossRef
ADS
Google scholar
|
[41] |
J. Goodkind, The superconducting gravimeter, Rev. Sci. Instrum. 70(11), 4131 (1999)
CrossRef
ADS
Google scholar
|
[42] |
H. J. Paik, Superconducting tunable-diaphragm transducer for sensitive acceleration measurements, J. Appl. Phys. 47(3), 1168 (1976)
CrossRef
ADS
Google scholar
|
[43] |
M. V. Moody and H. J. Paik, Gauss’s law test of gravity at short range, Phys. Rev. Lett. 70(9), 1195 (1993)
CrossRef
ADS
Google scholar
|
[44] |
S. Kachru, R. Kallosh, A. Linde, and S. P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68(4), 046005 (2003)
CrossRef
ADS
Google scholar
|
[45] |
R. Penrose, Twistor algebra, J. Math. Phys. 8(2), 345 (1967)
CrossRef
ADS
Google scholar
|
[46] |
L. Smolin, Newtonian gravity in loop quantum gravity, arXiv: 1001.3668 (2010)
|
/
〈 | 〉 |