Tunable topological quantum states in three- and two-dimensional materials
Ming Yang , Xiao-Long Zhang , Wu-Ming Liu
Front. Phys. ›› 2015, Vol. 10 ›› Issue (2) : 108102
Tunable topological quantum states in three- and two-dimensional materials
We review our theoretical advances in tunable topological quantum states in three- and twodimensional materials with strong spin–orbital couplings. In three-dimensional systems, we propose a new tunable topological insulator, bismuth-based skutterudites in which topological insulating states can be induced by external strains. The orbitals involved in the topological band-inversion process are the d- and p-orbitals, unlike typical topological insulators such as Bi2Se3and BiTeI, where only the p-orbitals are involved in the band-inversion process. Owing to the presence of large d-electronic states, the electronic interaction in our proposed topological insulator is much stronger than that in other conventional topological insulators. In two-dimensional systems, we investigated 3d-transition-metal-doped silicene. Using both an analytical model and first-principles Wannier interpolation, we demonstrate that silicene decorated with certain 3d transition metals such as vanadium can sustain a stable quantum anomalous Hall effect. We also predict that the quantum valley Hall effect and electrically tunable topological states could be realized in certain transition-metal-doped silicenes where the energy band inversion occurs. These findings provide realistic materials in which topological states could be arbitrarily controlled.
first-principles calculations / topological insulator / quantum anomalous Hall effect
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
There are nIr = 4 Ir atoms and nBi = 12 Bi atoms in an IrBi3 primitive cell. At GGA level, EIr = −8.69 eV for crystalline Ir with space group |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |