Optomechanically induced amplification and perfect transparency in double-cavity optomechanics
Xiao-Bo Yan, W. Z. Jia, Yong Li, Jin-Hui Wu, Xian-Li Li, Hai-Wei Mu
Optomechanically induced amplification and perfect transparency in double-cavity optomechanics
We study optomechanically induced amplification and perfect transparency in a double-cavity optomechanical system. We find that if two control lasers with appropriate amplitudes and detunings are applied to drive the system, optomechanically induced amplification of a probe laser can occur. In addition, perfect optomechanically induced transparency, which is robust to mechanical dissipation, can be realized by the same type of driving. These results indicate important progress toward signal amplification, light storage, fast light, and slow light in quantum information processes.
optomechanics / optomechanically induced amplification / optomechanically induced transparency
[1] |
T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science321(5893), 1172 (2008)
CrossRef
ADS
Google scholar
|
[2] |
F. Marquardt and S. M. Girvin, Optomechanics, Physics2, 40 (2009)
CrossRef
ADS
Google scholar
|
[3] |
P. Verlot, A. Tavernarakis, T. Briant, P. F. Cohadon, and A. Heidmann, Back-action amplification and quantum limits in optomechanical measurements, Phys. Rev. Lett.104(13), 133602 (2010)
CrossRef
ADS
Google scholar
|
[4] |
S. Mahajan, T. Kumar, A. B. Bhattacherjee, and ManMohan, Ground-state cooling of a mechanical oscillator and detection of a weak force using a Bose–Einstein condensate, Phys. Rev. A87(1), 013621 (2013)
CrossRef
ADS
Google scholar
|
[5] |
Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. H. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys.8(5), 475 (2013)
CrossRef
ADS
Google scholar
|
[6] |
S. Gigan, H. Böhm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, Self-cooling of a micromirror by radiation pressure, Nature444(7115), 67 (2006)
CrossRef
ADS
Google scholar
|
[7] |
D. Kleckner and D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator, Nature444(7115), 75 (2006)
CrossRef
ADS
Google scholar
|
[8] |
G. S. Agarwal and Sumei Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A81, 041803(R) (2010)
|
[9] |
T. J. Kippenberg and K. J. Vahala, Cavity opto-mechanics, Opt. Express15(25), 17172 (2007)
CrossRef
ADS
Google scholar
|
[10] |
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Ultra-high-Q toroid microcavity on a chip, Nature421(6926), 925 (2003)
CrossRef
ADS
Google scholar
|
[11] |
A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys.4(5), 415 (2008)
CrossRef
ADS
Google scholar
|
[12] |
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Optomechanical crystals, Nature462(7269), 78 (2009)
CrossRef
ADS
Google scholar
|
[13] |
Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities, Opt. Express18(23), 23844 (2010)
CrossRef
ADS
Google scholar
|
[14] |
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature452(7183), 72 (2008)
CrossRef
ADS
Google scholar
|
[15] |
H. K. Cheung, and C. K. Law, Nonadiabatic optomechanical Hamiltonian of a moving dielectric membrane in a cavity, Phys. Rev. A84(2), 023812 (2011)
CrossRef
ADS
Google scholar
|
[16] |
F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Cavity optomechanics with a Bose-Einstein condensate, Science322(5899), 235 (2008)
CrossRef
ADS
Google scholar
|
[17] |
K. Zhang, P. Meystre, and W. Zhang, Role reversal in a Bose-Condensed optomechanical system, Phys. Rev. Lett.108(24), 240405 (2012)
CrossRef
ADS
Google scholar
|
[18] |
K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)
CrossRef
ADS
Google scholar
|
[19] |
C. A. Regal, J. D. Teufel, and K. W. Lehnert, Measuring nanomechanical motion with a microwave cavity interferometer, Nat. Phys.4(7), 555 (2008)
CrossRef
ADS
Google scholar
|
[20] |
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys.85(2), 623 (2013)
CrossRef
ADS
Google scholar
|
[21] |
I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett.99(9), 093901 (2007)
CrossRef
ADS
Google scholar
|
[22] |
F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett.99(9), 093902 (2007)
CrossRef
ADS
Google scholar
|
[23] |
Y. Li, L. A. Wu, and Z. D. Wang, Fast ground-state cooling of mechanical resonators with time-dependent optical cavities, Phys. Rev. A83(4), 043804 (2011)
CrossRef
ADS
Google scholar
|
[24] |
J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, Parametric normal-mode splitting in cavity optomechanics, Phys. Rev. Lett.101(26), 263602 (2008)
CrossRef
ADS
Google scholar
|
[25] |
S. Gröblacher, K. Hammerer, M. Vanner, and M. Aspelmeyer, Observation of strong coupling between a micromechanical resonator and an optical cavity field, Nature460(7256), 724 (2009)
CrossRef
ADS
Google scholar
|
[26] |
J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, Circuit cavity electromechanics in the strong-coupling regime, Nature471(7337), 204 (2011)
CrossRef
ADS
Google scholar
|
[27] |
A. Kronwald and F. Marquardt, Optomechanically induced transparency in the nonlinear quantum regime, Phys. Rev. Lett.111(13), 133601 (2013)
CrossRef
ADS
Google scholar
|
[28] |
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically Induced Transparency, Science330(6010), 1520 (2010)
CrossRef
ADS
Google scholar
|
[29] |
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Electromagnetically induced transparency and slow light with optomechanics, Nature472(7341), 69 (2011)
CrossRef
ADS
Google scholar
|
[30] |
M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature, Phys. Rev. A88(1), 013804 (2013)
CrossRef
ADS
Google scholar
|
[31] |
D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, Slowing and stopping light using an optomechanical crystal array, New J. Phys.13(2), 023003 (2011)
CrossRef
ADS
Google scholar
|
[32] |
V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett.107(13), 133601 (2011)
CrossRef
ADS
Google scholar
|
[33] |
T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett.95(3), 033901 (2005)
CrossRef
ADS
Google scholar
|
[34] |
F. Marquardt, J. G. E. Harris, and S. M. Girvin, Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities, Phys. Rev. Lett.96(10), 103901 (2006)
CrossRef
ADS
Google scholar
|
[35] |
K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. W. Hänsch, and T. Udem, A phonon laser, Nat. Phys.5(9), 682 (2009)
CrossRef
ADS
Google scholar
|
[36] |
F. Massel, T. T. Heikkilä, J. M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, Microwave amplification with nanomechanical resonators, Nature480(7377), 351 (2011)
CrossRef
ADS
Google scholar
|
[37] |
A. Nunnenkamp, V. Sudhir, A. K. Feofanov, A. Roulet, and T. J. Kippenberg, Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics, arXiv: 1312.5867 (2013)
|
[38] |
A. Metelmann and A. A. Clerk, Quantum-limited amplification via reservoir engineering, Phys. Rev. Lett.112(13), 133904 (2014)
CrossRef
ADS
Google scholar
|
[39] |
X. B. Yan, C. L. Cui, K. H. Gu, X. D. Tian, C. B. Fu, and J. H. Wu, Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system, Opt. Express22(5), 4886 (2014)
CrossRef
ADS
Google scholar
|
[40] |
M. Paternostro, D. Vitali, S. Gigan, M. S. Kim, C. Brukner, J. Eisert, and M. Aspelmeyer, Creating and probing multipartite macroscopic entanglement with light, Phys. Rev. Lett.99(25), 250401 (2007)
CrossRef
ADS
Google scholar
|
[41] |
M. Bhattacharya and P. Meystre, Trapping and cooling a mirror to its quantum mechanical ground state, Phys. Rev. Lett.99(7), 073601 (2007)
CrossRef
ADS
Google scholar
|
[42] |
Y. D. Wang, and A. A. Clerk, Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett.108(15), 153603 (2012)
CrossRef
ADS
Google scholar
|
[43] |
R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, Bidirectional and efficient conversion between microwave and optical light, Nat. Phys.10(4), 321 (2014)
CrossRef
ADS
Google scholar
|
[44] |
J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, Coherent optical wavelength conversion via cavity optomechanics, Nat. Commun.3, 1196 (2012)
CrossRef
ADS
Google scholar
|
[45] |
G. S. Agarwal and S. Huang, Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes, New J. Phys.16(3), 033023 (2014)
CrossRef
ADS
Google scholar
|
[46] |
D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer-Verlag, 1994
|
/
〈 | 〉 |