Optomechanically induced amplification and perfect transparency in double-cavity optomechanics

Xiao-Bo Yan, W. Z. Jia, Yong Li, Jin-Hui Wu, Xian-Li Li, Hai-Wei Mu

PDF(275 KB)
PDF(275 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (3) : 104202. DOI: 10.1007/s11467-015-0456-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Optomechanically induced amplification and perfect transparency in double-cavity optomechanics

Author information +
History +

Abstract

We study optomechanically induced amplification and perfect transparency in a double-cavity optomechanical system. We find that if two control lasers with appropriate amplitudes and detunings are applied to drive the system, optomechanically induced amplification of a probe laser can occur. In addition, perfect optomechanically induced transparency, which is robust to mechanical dissipation, can be realized by the same type of driving. These results indicate important progress toward signal amplification, light storage, fast light, and slow light in quantum information processes.

Graphical abstract

Keywords

optomechanics / optomechanically induced amplification / optomechanically induced transparency

Cite this article

Download citation ▾
Xiao-Bo Yan, W. Z. Jia, Yong Li, Jin-Hui Wu, Xian-Li Li, Hai-Wei Mu. Optomechanically induced amplification and perfect transparency in double-cavity optomechanics. Front. Phys., 2015, 10(3): 104202 https://doi.org/10.1007/s11467-015-0456-2

References

[1]
T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science321(5893), 1172 (2008)
CrossRef ADS Google scholar
[2]
F. Marquardt and S. M. Girvin, Optomechanics, Physics2, 40 (2009)
CrossRef ADS Google scholar
[3]
P. Verlot, A. Tavernarakis, T. Briant, P. F. Cohadon, and A. Heidmann, Back-action amplification and quantum limits in optomechanical measurements, Phys. Rev. Lett.104(13), 133602 (2010)
CrossRef ADS Google scholar
[4]
S. Mahajan, T. Kumar, A. B. Bhattacherjee, and ManMohan, Ground-state cooling of a mechanical oscillator and detection of a weak force using a Bose–Einstein condensate, Phys. Rev. A87(1), 013621 (2013)
CrossRef ADS Google scholar
[5]
Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. H. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys.8(5), 475 (2013)
CrossRef ADS Google scholar
[6]
S. Gigan, H. Böhm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, Self-cooling of a micromirror by radiation pressure, Nature444(7115), 67 (2006)
CrossRef ADS Google scholar
[7]
D. Kleckner and D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator, Nature444(7115), 75 (2006)
CrossRef ADS Google scholar
[8]
G. S. Agarwal and Sumei Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A81, 041803(R) (2010)
[9]
T. J. Kippenberg and K. J. Vahala, Cavity opto-mechanics, Opt. Express15(25), 17172 (2007)
CrossRef ADS Google scholar
[10]
D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Ultra-high-Q toroid microcavity on a chip, Nature421(6926), 925 (2003)
CrossRef ADS Google scholar
[11]
A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys.4(5), 415 (2008)
CrossRef ADS Google scholar
[12]
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Optomechanical crystals, Nature462(7269), 78 (2009)
CrossRef ADS Google scholar
[13]
Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities, Opt. Express18(23), 23844 (2010)
CrossRef ADS Google scholar
[14]
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature452(7183), 72 (2008)
CrossRef ADS Google scholar
[15]
H. K. Cheung, and C. K. Law, Nonadiabatic optomechanical Hamiltonian of a moving dielectric membrane in a cavity, Phys. Rev. A84(2), 023812 (2011)
CrossRef ADS Google scholar
[16]
F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Cavity optomechanics with a Bose-Einstein condensate, Science322(5899), 235 (2008)
CrossRef ADS Google scholar
[17]
K. Zhang, P. Meystre, and W. Zhang, Role reversal in a Bose-Condensed optomechanical system, Phys. Rev. Lett.108(24), 240405 (2012)
CrossRef ADS Google scholar
[18]
K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)
CrossRef ADS Google scholar
[19]
C. A. Regal, J. D. Teufel, and K. W. Lehnert, Measuring nanomechanical motion with a microwave cavity interferometer, Nat. Phys.4(7), 555 (2008)
CrossRef ADS Google scholar
[20]
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys.85(2), 623 (2013)
CrossRef ADS Google scholar
[21]
I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett.99(9), 093901 (2007)
CrossRef ADS Google scholar
[22]
F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett.99(9), 093902 (2007)
CrossRef ADS Google scholar
[23]
Y. Li, L. A. Wu, and Z. D. Wang, Fast ground-state cooling of mechanical resonators with time-dependent optical cavities, Phys. Rev. A83(4), 043804 (2011)
CrossRef ADS Google scholar
[24]
J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, Parametric normal-mode splitting in cavity optomechanics, Phys. Rev. Lett.101(26), 263602 (2008)
CrossRef ADS Google scholar
[25]
S. Gröblacher, K. Hammerer, M. Vanner, and M. Aspelmeyer, Observation of strong coupling between a micromechanical resonator and an optical cavity field, Nature460(7256), 724 (2009)
CrossRef ADS Google scholar
[26]
J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, Circuit cavity electromechanics in the strong-coupling regime, Nature471(7337), 204 (2011)
CrossRef ADS Google scholar
[27]
A. Kronwald and F. Marquardt, Optomechanically induced transparency in the nonlinear quantum regime, Phys. Rev. Lett.111(13), 133601 (2013)
CrossRef ADS Google scholar
[28]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically Induced Transparency, Science330(6010), 1520 (2010)
CrossRef ADS Google scholar
[29]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Electromagnetically induced transparency and slow light with optomechanics, Nature472(7341), 69 (2011)
CrossRef ADS Google scholar
[30]
M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature, Phys. Rev. A88(1), 013804 (2013)
CrossRef ADS Google scholar
[31]
D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, Slowing and stopping light using an optomechanical crystal array, New J. Phys.13(2), 023003 (2011)
CrossRef ADS Google scholar
[32]
V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett.107(13), 133601 (2011)
CrossRef ADS Google scholar
[33]
T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett.95(3), 033901 (2005)
CrossRef ADS Google scholar
[34]
F. Marquardt, J. G. E. Harris, and S. M. Girvin, Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities, Phys. Rev. Lett.96(10), 103901 (2006)
CrossRef ADS Google scholar
[35]
K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. W. Hänsch, and T. Udem, A phonon laser, Nat. Phys.5(9), 682 (2009)
CrossRef ADS Google scholar
[36]
F. Massel, T. T. Heikkilä, J. M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, Microwave amplification with nanomechanical resonators, Nature480(7377), 351 (2011)
CrossRef ADS Google scholar
[37]
A. Nunnenkamp, V. Sudhir, A. K. Feofanov, A. Roulet, and T. J. Kippenberg, Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics, arXiv: 1312.5867 (2013)
[38]
A. Metelmann and A. A. Clerk, Quantum-limited amplification via reservoir engineering, Phys. Rev. Lett.112(13), 133904 (2014)
CrossRef ADS Google scholar
[39]
X. B. Yan, C. L. Cui, K. H. Gu, X. D. Tian, C. B. Fu, and J. H. Wu, Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system, Opt. Express22(5), 4886 (2014)
CrossRef ADS Google scholar
[40]
M. Paternostro, D. Vitali, S. Gigan, M. S. Kim, C. Brukner, J. Eisert, and M. Aspelmeyer, Creating and probing multipartite macroscopic entanglement with light, Phys. Rev. Lett.99(25), 250401 (2007)
CrossRef ADS Google scholar
[41]
M. Bhattacharya and P. Meystre, Trapping and cooling a mirror to its quantum mechanical ground state, Phys. Rev. Lett.99(7), 073601 (2007)
CrossRef ADS Google scholar
[42]
Y. D. Wang, and A. A. Clerk, Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett.108(15), 153603 (2012)
CrossRef ADS Google scholar
[43]
R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, Bidirectional and efficient conversion between microwave and optical light, Nat. Phys.10(4), 321 (2014)
CrossRef ADS Google scholar
[44]
J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, Coherent optical wavelength conversion via cavity optomechanics, Nat. Commun.3, 1196 (2012)
CrossRef ADS Google scholar
[45]
G. S. Agarwal and S. Huang, Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes, New J. Phys.16(3), 033023 (2014)
CrossRef ADS Google scholar
[46]
D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer-Verlag, 1994

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(275 KB)

Accesses

Citations

Detail

Sections
Recommended

/