Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions

Ning Zhan-Yu(宁展宇), Qiao Jing-Si(乔婧思), Ji Wei(季威), Guo Hong(郭鸿)

PDF(496 KB)
PDF(496 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (6) : 780-788. DOI: 10.1007/s11467-014-0453-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions

Author information +
History +

Abstract

We report theoretical investigations on the role of interfacial bonding mechanism and its resulting structures to quantum transport in molecular wires. Two bonding mechanisms for the Au-S bond in an Au(111)/1,4-benzenedithiol(BDT)/Au(111) junction were identified by ab initio calculation, confirmed by a recent experiment, which, we showed, critically control charge conduction. It was found, for Au/BDT/Aujunctions, the hydrogen atom, bound by a dative bond to the Sulfur, is energetically non-dissociativeafter the interface formation. The calculated conductance and junction breakdown forces of H-non-dissociative Au/BDT/Au devices are consistent with the experimental values, while the H-dissociated devices, with the interface governed by typical covalent bonding, give conductance more than an order of magnitude larger. By examining the scattering states that traverse the junctions, we have revealed that mechanical and electric properties of a junction have strong correlation with the bonding configuration. This work clearly demonstrates that the interfacial details, rather than previously believed many-body effects, is of vital importance for correctly predicting equilibrium conductance of molecular junctions; and manifests that the interfacial contact must be carefully understood for investigating quantum transport properties of molecular nanoelectronics.

Graphical abstract

Keywords

molecular electronics / contact formation / bonding mechanism / quantum transport

Cite this article

Download citation ▾
Ning Zhan-Yu(宁展宇), Qiao Jing-Si(乔婧思), Ji Wei(季威), Guo Hong(郭鸿). Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions. Front. Phys., 2014, 9(6): 780‒788 https://doi.org/10.1007/s11467-014-0453-x

References

[1]
H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Observation of molecular orbital gating, Nature, 2009, 462(7276): 1039
CrossRef ADS Google scholar
[2]
X. Y. Xiao, B. Q. Xu and N. J. Tao, Measurement of single mol<?Pub Caret?>ecule conductance: Benzenedithiol and benzenedimethanethiol, Nano Lett., 2004, 4(2): 267
CrossRef ADS Google scholar
[3]
M. Tsutsui, M. Taniguchi, and T. Kawai, Atomistic mechanics and formation mechanism of metal-molecule-metal junctions, Nano Lett., 2009, 9(6): 2433
CrossRef ADS Google scholar
[4]
M. Di Ventra, S. T. Pantelides, and N. D. Lang, The benzene molecule as a molecular resonant-tunneling transistor, Appl. Phys. Lett., 2000, 76(23): 3448
CrossRef ADS Google scholar
[5]
K. Stokbro, J. Taylor, M. Brandbyge, J. L. Mozos, and P. Ordejón, Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds, Comput. Mater. Sci., 2003, 27(1-2): 151
CrossRef ADS Google scholar
[6]
T. Tada, M. Kondo, and K. Yoshizawa, Green’s function formalism coupled with Gaussian broadening of discrete states for quantum transport: Application to atomic and molecular wires, J. Chem. Phys., 2004, 121(16): 8050
CrossRef ADS Google scholar
[7]
S.-H. Ke, H. U. Baranger, and W. Yang, Molecular conductance: Chemical trends of anchoring groups, Journal of the American Chemical Society, 2004, 126(48): 15897
CrossRef ADS Google scholar
[8]
P. Delaney and J. C. Greer, Correlated electron transport in molecular electronics, Phys. Rev. Lett., 2004, 93(3): 036805
CrossRef ADS Google scholar
[9]
G. C. Solomon, J. R. Reimers, and N. S. Hush, Overcoming computational uncertainties to reveal chemical sensitivity in single molecule conduction calculations, J. Chem. Phys., 2005, 122(22): 224502
CrossRef ADS Google scholar
[10]
R. B. Pontes, F. D. Novaes, A. Fazzio, and A. J. R. da Silva, Adsorption of benzene-1,4-dithiol on the Au(111) surface and its possible role in molecular conductance, Journal of the American Chemical Society, 2006, 128(28): 8996
CrossRef ADS Google scholar
[11]
D. Q. Andrews, R. P. Van Duyne, and M. A. Ratner, Stochastic modulation in molecular electronic transport junctions: molecular dynamics coupled with charge transport calculations, Nano Lett., 2008, 8(4): 1120
CrossRef ADS Google scholar
[12]
J. Nara, W. T. Geng, H. Kino, N. Kobayashi, and T. Ohno, Theoretical investigation on electron transport through an organic molecule: Effect of the contact structure, J. Chem. Phys., 2004, 121(13): 6485
CrossRef ADS Google scholar
[13]
C. Toher and S. Sanvito, Efficient atomic self-interaction correction scheme for nonequilibrium quantum transport, Phys. Rev. Lett., 2007, 99(5): 056801
CrossRef ADS Google scholar
[14]
C. Toher and S. Sanvito, Effects of self-interaction corrections on the transport properties of phenyl-based molecular junctions, Phys. Rev. B, 2008, 77(15): 155402
CrossRef ADS Google scholar
[15]
M. Strange, I. S. Kristensen, K. S. Thygesen, and K. W. Jacobsen, Benchmark density functional theory calculations for nanoscale conductance, J. Chem. Phys., 2008, 128(11): 114714
CrossRef ADS Google scholar
[16]
S. Y. Quek, H. J. Choi, S. G. Louie, and J. B. Neaton, Length dependence of conductance in aromatic single-molecule junctions, Nano Lett., 2009, 9(11): 3949
CrossRef ADS Google scholar
[17]
M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Conductance of a molecular junction, Science, 1997, 278(5336): 252
CrossRef ADS Google scholar
[18]
Z. Huang, B. Q. Xu, Y. C. Chen, M. Di Ventra, and N. J. Tao, Measurement of current-induced local heating in a single molecule junction, Nano Lett., 2006, 6(6): 1240
CrossRef ADS Google scholar
[19]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[20]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 1999, 59(3): 1758
CrossRef ADS Google scholar
[21]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[22]
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407
CrossRef ADS Google scholar
[23]
Z. Ning, Y. Zhu, J. Wang, and H. Guo, Quantitative analysis of nonequilibrium spin injection into molecular tunnel junctions, Phys. Rev. Lett., 2008, 100(5): 056803
CrossRef ADS Google scholar
[24]
Y. Hu, Y. Zhu, H. Gao, and H. Guo, Conductance of an ensemble of molecular wires: A statistical analysis, Phys. Rev. Lett., 2005, 95(15): 156803
CrossRef ADS Google scholar
[25]
M. Kamenetska, M. Koentopp, A. C. Whalley, Y. S. Park, M. L. Steigerwald, C. Nuckolls, M. S. Hybertsen, and L. Venkataraman, Formation and evolution of single-molecule junctions, Phys. Rev. Lett., 2009, 102(12): 126803
CrossRef ADS Google scholar
[26]
C.-C. Kaun and H. Guo, Resistance of alkanethiol molecular wires, Nano Lett., 2003, 3(11): 1521
CrossRef ADS Google scholar
[27]
F.-S. Li, W. Zhou, and Q. Guo, Uncovering the hidden gold atoms in a self-assembled monolayer of alkanethiol molecules on Au(111), Phys. Rev. B, 2009, 79(11): 113412
CrossRef ADS Google scholar
[28]
I. I. Rzeźnicka, J. Lee, P. Maksymovych, and J. T. Yates, Nondissociative chemisorption of short chain alkanethiols on Au(111), J. Phys. Chem. B, 2005, 109(33): 15992
CrossRef ADS Google scholar
[29]
J.-G. Zhou and F. Hagelberg, Do Methanethiol adsorbates on the Au(111) surface dissociate? Phys. Rev. Lett., 2006,97(4): 045505
CrossRef ADS Google scholar
[30]
T. Rangel, A. Ferretti, P. E. Trevisanutto, V. Olevano, and G. M. Rignanese, Transport properties of molecular junctions from many-body perturbation theory, Phys. Rev. B, 2011, 84(4): 045426
CrossRef ADS Google scholar
[31]
M. Strange, C. Rostgaard, H. Häkkinen, and K. S. Thygesen, Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions, Phys. Rev. B, 2011, 83(11): 115108
CrossRef ADS Google scholar
[32]
W. Ji, Z.-Y. Lu, and H.-J. Gao, Multichannel interaction mechanism in a molecule-metal interface, Phys. Rev. B, 2008, 77(11): 113406
CrossRef ADS Google scholar
[33]
W. Ji, Z.-Y. Lu, and H. Gao, Electron core-hole interaction and its induced ionic structural relaxation in molecular systems under X-ray irradiation, Phys. Rev. Lett., 2006, 97(24): 246101
CrossRef ADS Google scholar
[34]
Z.-X. Hu, H. Lan, and W. Ji, Role of the dispersion force in modeling the interfacial properties of molecule-metal interfaces: Adsorption of thiophene on copper surfaces, Sci. Rep., 2014, 4: 5036
[35]
L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Dependence of single-molecule junction conductance on molecular conformation, Nature, 2006, 442(7105): 904
CrossRef ADS Google scholar
[36]
Y. Jiang, Q. Huan, L. Fabris, G. C. Bazan, and W. Ho, Submolecular control, spectroscopy and imaging of bondselective chemistry in single functionalized molecules, Nat. Chem., 2013, 5(1): 36
CrossRef ADS Google scholar
[37]
F. Cheng, W. Ji, L. Leung, Z. Ning, J. C. Polanyi, and C.-G. Wang, How adsorbate alignment leads to selective reaction, ACS Nano, 2014, 8(8): 8669
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(496 KB)

Accesses

Citations

Detail

Sections
Recommended

/