Pseudogap phenomena in ultracold atomic Fermi gases

Qijin Chen, Jibiao Wang

PDF(1469 KB)
PDF(1469 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (5) : 539-570. DOI: 10.1007/s11467-014-0448-7
REVIEW ARTICLE
REVIEW ARTICLE

Pseudogap phenomena in ultracold atomic Fermi gases

Author information +
History +

Abstract

The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high Tcsuperconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to the mysteries of high Tcsuperconductivity. One obstacle to the ultimate understanding of high Tcsuperconductivity, from day one of its discovery, is the anomalous yet widespread pseudogap phenomena, for which a consensus is yet to be reached within the physics community, after over 27 years of intensive research efforts. In this article, we shall review the progress in the study of pseudogap phenomena in atomic Fermi gases in terms of both theoretical understanding and experimental observations. We show that there is strong, unambiguous evidence for the existence of a pseudogap in strongly interacting Fermi gases. In this context, we shall present a pairing fluctuation theory of the pseudogap physics and show that it is indeed a strong candidate theory for high Tcsuperconductivity.

Graphical abstract

Keywords

pseudogap / pairing fluctuation theory / atomic Fermi gases / BCS–BEC crossover / high Tcsuperconductivity

Cite this article

Download citation ▾
Qijin Chen, Jibiao Wang. Pseudogap phenomena in ultracold atomic Fermi gases. Front. Phys., 2014, 9(5): 539‒570 https://doi.org/10.1007/s11467-014-0448-7

References

[1]
Q. J. Chen, J. Stajic, S. N. Tan, and K. Levin, BCS–BEC crossover: From high temperature superconductors to ultracold superfluids, Phys. Rep., 2005, 412(1): 1
CrossRef ADS Google scholar
[2]
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys., 2008, 80: 885
CrossRef ADS Google scholar
[3]
J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 1998, 2: 231, see also: arXiv: hep-th/9711200v3
[4]
E. Witten, Anti De Sitter space and holography, Adv. Theor. Math. Phys., 1998, 2: 253
[5]
O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, Large N field theories, string theory and gravity, Phys. Rep., 2000, 323(3−4): 183
CrossRef ADS Google scholar
[6]
M. Čubrović, J. Zaanen, and K. Schalm, String theory, quantum phase transitions, and the emergent Fermi liquid, Science, 2009, 325(5939): 439
CrossRef ADS Google scholar
[7]
T. Timusk and B. Statt, The pseudogap in high-temperature superconductors: An experimental survey, Rep. Prog. Phys., 1999, 62(1): 61
CrossRef ADS Google scholar
[8]
J. R. Schrieffer, Theory of Supercondutivity, 3rd Ed., Perseus Books, Reading, MA, 1983
[9]
S. N. Bose, Plancks gesetz und lichtquantenhypothese, Z. Phys., 1924, 26(1): 178
CrossRef ADS Google scholar
[10]
A. Einstein, Quantentheorie des einatomigen idealen gases (II), Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1925, 1: 3
[11]
L. Pitaevskii and S. Stringari, Bose–Einstein Condensation, New York: Oxford, 2003
[12]
C. J. Pethik and H. Smith, Bose–Einstein Condensation in Dilute Gases, Cambridge: Cambridge University Press, 2002
[13]
D. M. Eagles, Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors, Phys. Rev., 1969, 186(2): 456
CrossRef ADS Google scholar
[14]
A. J. Leggett, Diatomic molecules and cooper pairs, in: Modern Trends in the Theory of Condensed Matter, Berlin: Springer-Verlag, 1980, pp. 13−27
CrossRef ADS Google scholar
[15]
P. Nozières and S. Schmitt-Rink, Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity, J. Low Temp. Phys., 1985, 59(3−4): 195
CrossRef ADS Google scholar
[16]
R. Friedberg and T. D. Lee, Boson–Fermion model of superconductivity, Phys. Lett. A, 1989, 138(8): 423
CrossRef ADS Google scholar
[17]
T. Friedberg and T. D. Lee, Gap energy and long-range order in the boson–fermion model of superconductivity, Phys. Rev. B, 1989, 40: 6745
CrossRef ADS Google scholar
[18]
C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht, Crossover from BCS to Bose superconductivity: Transition temperature and time-dependent Ginzburg–Landau theory, Phys. Rev. Lett., 1993, 71: 3202
CrossRef ADS Google scholar
[19]
M. Randeria, Crossover from BCS theory to Bose-Einstein Condensation, in: Bose–Einstein Condensation, edited by A. Griffin, D. Snoke, and S. Stringari, Cambridge: Cambridge University Press, 1995, pp. 355−392
CrossRef ADS Google scholar
[20]
B. Jankó, J. Maly, and K. Levin, Pseudogap effects induced by resonant pair scattering, Phys. Rev. B, 1997, 56(18): R11407(R)
CrossRef ADS Google scholar
[21]
J. Maly, B. Jankó, and K. Levin, Numerical studies of the s-wave pseudogap state and related Tc: The “pairing approximation” theory, Physica C, 1999, 321(1−2): 113
CrossRef ADS Google scholar
[22]
J. Maly, B. Jankó, and K. Levin, Superconductivity from a pseudogapped normal state: A mode-coupling approach to precursor superconductivity, Phys. Rev. B, 1999, 59: 1354
CrossRef ADS Google scholar
[23]
Q. J. Chen, I. Kosztin, B. Jankó, and K. Levin, Pairing fluctuation theory of superconducting properties in underdoped to overdoped cuprates, Phys. Rev. Lett., 1998, 81: 4708
CrossRef ADS Google scholar
[24]
Q. J. Chen, I. Kosztin, B. Jankó, and K. Levin, Superconducting transitions from the pseudogap state: d-wave symmetry, lattice, and low-dimensional effects, Phys. Rev. B, 1999, 59: 7083
CrossRef ADS Google scholar
[25]
I. Kosztin, Q. J. Chen, B. Jankó, and K. Levin, Relationship between the pseudo- and superconducting gaps: Effects of residual pairing correlations below Tc, Phys. Rev. B, 1998, 58: R5936(R)
CrossRef ADS Google scholar
[26]
R. Micnas, J. Ranninger, and S. Robaszkiewicz, Superconductivity in narrow-band systems with local nonretarded attractive interactions, Rev. Mod. Phys., 1990, 62: 113
CrossRef ADS Google scholar
[27]
R. Micnas and S. Robaszkiewicz, Superconductivity in systems with local attractive interactions, Cond. Matt. Phys. (Lviv), 1998, 13: 89
CrossRef ADS Google scholar
[28]
R. Micnas, M. H. Pedersen, S. Schafroth, T. Schneider, J. J. Rodríguez-Núñez, and H. Beck, Excitation spectrum of the attractive Hubbard model, Phys. Rev. B, 1995, 52: 16223
CrossRef ADS Google scholar
[29]
J. Ranninger and J. M. Robin, Manifestations of the pseudogap in the boson–fermion model for Bose–Einsteincondensation-driven superconductivity, Phys. Rev. B, 1996, 53: R11961(R)
CrossRef ADS Google scholar
[30]
M. Drechsler and W. Zwerger, Crossover from BCSsuperconductivity to Bose-condensation, Ann. Phys., 1992, 1: 15
CrossRef ADS Google scholar
[31]
R. Haussmann, Crossover from BCS superconductivity to Bose–Einstein condensation: A self-consistent theory, Z. Phys. B, 1993, 91(3): 291
CrossRef ADS Google scholar
[32]
R. Haussmann, Properties of a Fermi liquid at the superfluid transition in the crossover region between BCS superconductivity and Bose–Einstein condensation, Phys. Rev. B, 1994, 49: 12975
CrossRef ADS Google scholar
[33]
O. Tchernyshyov, Noninteracting Cooper pairs inside a pseudogap, Phys. Rev. B, 1997, 56: 3372
CrossRef ADS Google scholar
[34]
E. V. Gorbar, V. M. Loktev, and S. G. Sharapov, Crossover from BCS to composite-boson (local-pair) superconductivity in quasi-2D systems, Physica C, 1996, 257(3−4): 355
CrossRef ADS Google scholar
[35]
V. P. Gusynin, V. M. Loktev, and S. G. Sharapov, Phase diagram of a 2D metal system with a variable number of carriers, JETP Lett., 1997, 65(2): 182
CrossRef ADS Google scholar
[36]
M. Marini, F. Pistolesi, and G. C. Strinati, Evolution from BCS superconductivity to Bose condensation: Analytic results for the crossover in three dimensions, Eur. Phys. J. B, 1998, 1(2): 151
CrossRef ADS Google scholar
[37]
B. DeMarco and D. S. Jin, Onset of Fermi degeneracy in a trapped atomic gas, Science, 1999, 285(5434): 1703
CrossRef ADS Google scholar
[38]
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose–Einstein condensation in a dilute atomic vapor, Science, 1995, 269(5221): 198
CrossRef ADS Google scholar
[39]
C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett., 1995, 75: 1687
CrossRef ADS Google scholar
[40]
C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions [Phys. Rev. Lett. 75, 1687 (1995)], Phys. Rev. Lett., 1997, 79: 1170
CrossRef ADS Google scholar
[41]
K. B. Davis, M. Mewes, M. R. Andrews, D. S. Durfee, D. M. Kurn, W. Ketterle, and W. Ketterle, Bose–Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 1995, 75(22): 3969
CrossRef ADS Google scholar
[42]
M. Greiner, C. A. Regal, and D. S. Jin, Emergence of a molecular Bose–Einstein condensate from a Fermi gas, Nature, 2003, 426(6966): 537
CrossRef ADS Google scholar
[43]
S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. H. Denschlag, and R. Grimm, Bose–Einstein condensation of molecules, Science, 2003, 302(5653): 2101
CrossRef ADS Google scholar
[44]
M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, Observation of Bose–Einstein condensation of molecules, Phys. Rev. Lett., 2003, 91(25): 250401
CrossRef ADS Google scholar
[45]
C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett., 2004, 92(4): 040403
CrossRef ADS Google scholar
[46]
M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag, and R. Grimm, Crossover from a molecular Bose–Einstein condensate to a degenerate Fermi gas, Phys. Rev. Lett., 2004, 92(12): 120401
CrossRef ADS Google scholar
[47]
C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. H. Denschlag, and R. Grimm, Observation of the pairing gap in a strongly interacting Fermi gas, Science, 2004, 305(5687): 1128
CrossRef ADS Google scholar
[48]
M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. Raupach, A. J. Kerman, and W. Ketterle, Condensation of pairs of fermionic atoms near a Feshbach resonance, Phys. Rev. Lett., 2004, 92(12): 120403
CrossRef ADS Google scholar
[49]
J. Kinast, A. Turlapov, J. E. Thomas, Q. J. Chen, J. Stajic, and K. Levin, Heat capacity of a strongly interacting Fermi gas, Science, 2005, 307(5713): 1296
CrossRef ADS Google scholar
[50]
M. W. Zwierlein, J. R. Abo-Shaeer, and A. Schirotzek, and W. Ketterle, Vortices and superfluidity in a strongly interacting Fermi gas, Nature, 2005, 435: 1047
CrossRef ADS Google scholar
[51]
M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Fermionic superfluidity with imbalanced spin populations, Science, 2006, 311(5760): 492
CrossRef ADS Google scholar
[52]
G. B. Partridge, W. Li, R. I. Kamar, Y. A. Liao, and R. G. Hulet, Pairing and phase separation in a polarized Fermi gas, Science, 2006, 311(5760): 503
CrossRef ADS Google scholar
[53]
P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev., 1964, 135(3A): A550
CrossRef ADS Google scholar
[54]
A. I. Larkin and Yu. N. Ovchinnikov, Neodnorodnoe sostoyanie sverkhprovodnikov, Zh. Eksp. Teor. Fiz., 1964, 47: 1136
[55]
I. Larkin and Yu. N. Ovhinnikov, Nonuniform state of superconductors, Sov. Phys. JETP, 1965, 20: 762
[56]
Q. J. Chen, Generalization of BCS theory to short coherence length superconductors: A BCS-Bose-Einstein crossover scenario, Ph.D. thesis, University of Chiago, 2000, available in the ProQuest Dissertations & Theses Database online.
[57]
Q. J. Chen, J. Stajic, and K. Levin, Applying BCS–BEC crossover theory to high temperature superconductors and ultracold atomic Fermi gases, Low Temp. Phys., 2006, 32(4): 406; Fiz. Nizk. Temp., 2006, 32: 538
[58]
S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultracold atomic Fermi gases, Rev. Mod. Phys., 2008, 80(4): 1215
CrossRef ADS Google scholar
[59]
C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys., 2010, 82(2): 1225
CrossRef ADS Google scholar
[60]
M. Inguscio, W. Ketterle, and C. Salomon (Eds.), Ultracold Fermi gases, Proceedings of the International School of Physics “Enrico Fermi”, Vol. CLXIV, Varenna, 2006, Società Italiana di Fisca Bologna, Italy (ISO press, Amsterdam, 2008)
[61]
H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Randeria, M. R. Norman, T. Mochiku, K. Hadowaki, and J. Giapintzakis, Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors, Nature, 1996, 382(6586): 51
CrossRef ADS Google scholar
[62]
Ch. Renner, B. Revaz, K. Kadowaki, I. Maggio-Aprile, and O. Fischer, Observation of the low temperature pseudogap in the vortex cores of Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett., 1998, 80(16): 3606
CrossRef ADS Google scholar
[63]
Ch. Renner, B. Revaz, J. Y. Genoud, K. Kadowaki, and O. Fischer, Pseudogap precursor of the superconducting gap in under- and overdoped Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett., 1998, 80(1): 149
CrossRef ADS Google scholar
[64]
V. M. Krasnov, A. Yurgens, D. Winkler, P. Delsing, and T. Claeson, Evidence for coexistence of the superconducting gap and the pseudogap in Bi-2212 from intrinsic tunneling spectroscopy, Phys. Rev. Lett., 2000, 84: 5860
CrossRef ADS Google scholar
[65]
M. Kugler, O. Fischer, Ch. Renner, S. Ono, and Y. Ando, Scanning tunneling spectroscopy of Bi2Sr2CuO6+δ: New evidence for the common origin of the pseudogap and superconductivity, Phys. Rev. Lett., 2001, 86(21): 4911
CrossRef ADS Google scholar
[66]
J. W. Loram, K. Mirza, J. Cooper, W. Liang, and J. Wade, Electronic specific heat of YBa2Cu3O6+x from 1.8 to 300 K, J. Superondutivity, 1994, 7(1): 243
[67]
G. V. M. Williams, E. M. Haines, and J. L. Tallon, Pair breaking in the presence of a normal-state pseudogap in high-Tc cuprates, Phys. Rev. B, 1998, 57: 146
CrossRef ADS Google scholar
[68]
D. Walker, A. P. Mackenzie, and J. R. Cooper, Transport properties of zinc-doped YBa2Cu3O7−δ thin films, Phys. Rev. B, 1995, 51: 15653(R)
CrossRef ADS Google scholar
[69]
T. Graf, J. M. Lawrene, M. F. Hundley, J. D. Thompson, A. Lacerda, E. Haanappel, M. S. Torikahili, Z. Fisk, and P. C. Canfield, Resistivity, magnetization, and specific heat of YbAgCu4 in high magnetic fields, Phys. Rev. B, 1995, 51: 15053
CrossRef ADS Google scholar
[70]
Y. F. Yan, P. Matl, J. M. Harris, and N. P. Ong, Negative magnetoresistance in the c-axis resistivity of Bi2Sr2CaCu2O8+δ and YBa2Cu3O6+x, Phys. Rev. B, 1995, 52: R751(R)
CrossRef ADS Google scholar
[71]
G. Williams, J. L. Tallon, R. Dupree, and R. Michalak, Transport and NMR studies of the effect of Ni substitution on superconductivity and the normal-state pseudogap in YBa2Cu4O8, Phys. Rev. B, 1996, 54: 9532
CrossRef ADS Google scholar
[72]
G. Williams, J. L. Tallon, E. M. Haines, R. Michalak, and R. Dupree, NMR evidence for a d-wave normal-state pseudogap, Phys. Rev. Lett., 1997, 78: 721
CrossRef ADS Google scholar
[73]
K. Magishi, Y. Kituoka, G.-Q. Zheng, K. Asayama, T. Kondo, Y. Shimakawa, T. Manako, and Y. Kubo, Spin-gap behavior in underdoped TlSr2(Lu0.7Ca0.3)Cu2Oy: 63Cu and 205Tl NMR studies, Phys. Rev. B, 1996, 54: 3070
CrossRef ADS Google scholar
[74]
A. Goto, H. Yasuoka, K. Otzschi, and Y. Ueda, Phase diagram for the spin pseudogap in LaBa2Cu3Oy studied by NMR, Phys. Rev. B, 1997, 55: 12736
CrossRef ADS Google scholar
[75]
J. Bobroff, H. Alloul, P. Mendels, V. Viallet, J.-F.Marucco, and D. Colson, 17O NMR evidence for a pseudogap in the monolayer HgBa2CuO4+δ, Phys. Rev. Lett., 1997, 78: 3757
CrossRef ADS Google scholar
[76]
K. Ishida, K. Yoshida, T. Mito, Y. Tokumaga, Y. Kitaoka, K. Asayama, Y. Nakayama, J. Shimoyama, and K. Kishio, Pseudogap behavior in single-crystal Bi2Sr2CaCu2O8+δ probed by Cu NMR, Phys. Rev. B, 1998, 58: R5960(R)
CrossRef ADS Google scholar
[77]
A. V. Puchkov, D. N. Basov, and T. Timusk, The pseudogap state in high-Tc superconductors: An infrared study, J. Phys.: Condens. Matter, 1996, 8(48): 10049
CrossRef ADS Google scholar
[78]
D. N. Basov, R. Liang, B. Dabrowski, D. A. Bonn, W. N. Hardy, and T. Timusk, Pseudogap and charge dynamics in CuO2 planes in YBCO, Phys. Rev. Lett., 1996, 77: 4090
CrossRef ADS Google scholar
[79]
D. Basov, C. Homes, E. Singley, M. Strongin, T. Timusk, G. Blumberg, and D. van der Marel, Unconventional energetics of the pseudogap state and superconducting state in high-Tc cuprates, Phys. Rev. B, 2001, 63: 134514
CrossRef ADS Google scholar
[80]
J. M. Tranquada, P. M. Gehring, G. Shirane, S. Shamoto, and M. Sato, Neutron-scattering study of the dynamical spin susceptibility in YBa2Cu3O6.6, Phys. Rev. B, 1992, 46: 5561
CrossRef ADS Google scholar
[81]
P. C. Dai, H. A. Mook, S. M. Hayden, and F. Dogan, Resonance as a measure of pairing correlations in the high-Tc superconductor YBa2Cu3O6.6, Nature, 2000, 406: 965
CrossRef ADS Google scholar
[82]
B. Lake, G. Aeppli, T. E. Mason, A. Schroeder, D. F. Mc-Morrow, K. Lefmann, M. Isshiki, M. Nohara, H. Takagi, and S. M. Hayden, Spin gap and magnetic coherence in a clean high-temperature superconductor, Nature, 1999, 400: 43
CrossRef ADS Google scholar
[83]
G. Ruani and P. Ricci, Transitions at T>Tc in underdoped crystals of YBa2Cu3O7−x observed by resonant Raman scattering, Phys. Rev. B, 1997, 55: 93
CrossRef ADS Google scholar
[84]
X. K. Chen, J. G. Nacini, K. C. Hewitt, J. C. Irwin, R. Liang, and W. N. Hardy, Electronic Raman scattering in underdoped YBa2Cu3O6.5, Phys. Rev. B, 1997, 56: R513(R)
CrossRef ADS Google scholar
[85]
R. Nemetschek, M. Opel, C. Hoffmann, P. F. Muller, R. Hackl, H. Berger, L. Forro, A. Er, and E. Walker, Pseudogap and superconducting gap in the electronic Raman spectra of underdoped cuprates, Phys. Rev. Lett., 1997, 78: 4837
CrossRef ADS Google scholar
[86]
J. W. Quilty, H. J. Trodahl, and D. M. Pooke, Electronic Raman scattering from Bi2Sr2CaCu2O8+δ: Doping dependence of the pseudogap and anomalous 600 cm−1 peak, Phys. Rev. B, 1998, 57: R11097
CrossRef ADS Google scholar
[87]
Z. A. Xu, N. Ong, Y. Want, T. Kakeshita, and S. Uchida, Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2−xSrxCuO4, Nature, 2000, 406: 486
CrossRef ADS Google scholar
[88]
Y. Wang, Z. A. Xu, T. Kakeshita, S. Uchida, and N. P. Ong, Onset of the vortexlike Nernst signal above Tc in La2−xSrxCuO4 and Bi2Sr2−yLayCuO6, Phys. Rev. B, 2001, 64: 224519
CrossRef ADS Google scholar
[89]
Y. Y. Wang, N. P. Ong, Z. A. Xu, T. Kakeshita, S. Uchida, D. Bonn, R. Liang, and W. Hardy, High field phase diagram of cuprates derived from the Nernst effect, Phys. Rev. Lett., 2002, 88: 257003
CrossRef ADS Google scholar
[90]
S. Tan and K. Levin, Nernst effect and anomalous transport in cuprates: A preformed-pair alternative to the vortex scenario, Phys. Rev. B, 2004, 69(6): 064510
CrossRef ADS Google scholar
[91]
A. G. Loeser, Z. X. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, P. Fournier, and A. Kapitulnik, Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+δ, Science, 1996, 273(5273): 325
CrossRef ADS Google scholar
[92]
A. Kanigel, U. Chatterjee, M. Randeria, M. R. Norman, G. Koren, K. Kadowaki, and J. C. Campuzano, Evidence for pairing above the transition temperature of cuprate superconductors from the electronic dispersion in the pseudogap phase, Phys. Rev. Lett., 2008, 101(13): 137002
CrossRef ADS Google scholar
[93]
For simplicity, here we do not discuss electron doping, which is rather similar. Further information can be found in Ref. [7].
[94]
S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak, Hidden order in the cuprates, Phys. Rev. B, 2001, 63(9): 094503
CrossRef ADS Google scholar
[95]
P. A. Lee, High Tc superconductors as doped Mott insulators: Fluctuating current and spin chirality, Physica C, 2000, 341−348: 63
[96]
P. A. Lee and X.-G. Wen, Vortex structure in underdoped cuprates, Phys. Rev. B, 2001, 63(22): 224517
CrossRef ADS Google scholar
[97]
C. Honerkamp and P. A. Lee, Staggered flux fluctuations and the quasiparticle scattering rate in the SU(2) gauge theory of the t–J model, Phys. Rev. Lett., 2003, 90(24): 246402
CrossRef ADS Google scholar
[98]
C. M. Varma, Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals, Phys. Rev. B, 1997, 55(21): 14554
CrossRef ADS Google scholar
[99]
C. M. Varma, Theory of the pseudogap state of the cuprates, Phys. Rev. B, 2006, 73(15): 155113
CrossRef ADS Google scholar
[100]
J. W. Loram, K. A. Mirza, J. R. Cooper, and J. L. Tallon, Specific heat evidence on the normal state pseudogap, J. Phys. Chem. Solids, 1998, 59(10−12): 2091
CrossRef ADS Google scholar
[101]
J. L. Tallon and J. W. Loram, The doping dependence of T – What is the real high-Tc phase diagram? Physica C, 2001, 349(1−2): 53
CrossRef ADS Google scholar
[102]
Q. J. Chen, K. Levin, and I. Kosztin, Superconducting phase coherence in the presence of a pseudogap: Relation to specific heat, tunneling, and vortex core spectroscopies, Phys. Rev. B, 2001, 63(18): 184519
CrossRef ADS Google scholar
[103]
P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, Science, 1987, 235(4793): 1196
CrossRef ADS Google scholar
[104]
P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rie, N. Trivedi, and F. C. Zhang, The physics behind hightemperature superconducting cuprates: The “plain vanilla” version of RVB, J. Phys.: Condens. Matter, 2004, 16(24): R755
CrossRef ADS Google scholar
[105]
N. Nagaosa and P. A. Lee, Ginzburg–Landau theory of the spin-charge-separated system, Phys. Rev. B, 1992, 45: 966
CrossRef ADS Google scholar
[106]
For a review of spin-harge separation, see: P. A. Lee, Pseudogaps in underdoped cuprates, Physica C, 1999, 317−318: 194
CrossRef ADS Google scholar
[107]
Y. J. Uemura, G. M. Luke, B. J. Sternlieb, J. H. Brewer, J. F. Carolan, , Universal Correlations between Tc and ns/m (carrier density over effective mass) in high-Tc cuprate superconductors, Phys. Rev. Lett., 1989, 62: 2317
CrossRef ADS Google scholar
[108]
Y. J. Uemura, Bose–Einstein to BCS crossover picture for high-Tc cuprates, Physica C, 1997, 282−287: 194
[109]
V. Mishra, U. Chatterjee, J. C. Campuzano, and M. R. Norman, Effect of the pseudogap on the transition temperature in the cuprates and implications for its origin, Nat. Phys., 2014, 10(5): 357
CrossRef ADS Google scholar
[110]
V. J. Emery and S. A. Kivelson, Importance of phase fluctuations in superconductors with small superfluid density, Nature, 1995, 374: 434
CrossRef ADS Google scholar
[111]
M. Franz, Z. B. Tesanovic, and O. Vafek, QED3 theory of pairing pseudogap in cuprates: From d-wave superconductor to antiferromagnet via “algebraic” Fermi liquid, Phys. Rev. B, 2002, 66: 054535
CrossRef ADS Google scholar
[112]
I. Ussishkin, S. L. Sondhi, and D. A. Huse, Gaussian superconducting fluctuations, thermal transport, and the Nernst effect, Phys. Rev. Lett., 2002, 89(28): 287001
CrossRef ADS Google scholar
[113]
J. N. Milstein, S. J. J. M. F. Kokkelmans, and M. J. Holland, Resonance theory of the crossover from Bardeen–Cooper-Schrieffer superfluidity to Bose–Einstein condensation in a dilute Fermi gas, Phys. Rev. A, 2002, 66(4): 043604
CrossRef ADS Google scholar
[114]
Y. Ohashi and A. Griffin, BCS–BEC crossover in a gas of Fermi atoms with a Feshbach resonance, Phys. Rev. Lett., 2002, 89(13): 130402
CrossRef ADS Google scholar
[115]
N. Andrenacci, P. Pieri, and G. C. Strinati, Evolution from BCS superconductivity to Bose–Einstein condensation: Current correlation function in the broken-symmetry phase, Phys. Rev. B, 2003, 68: 144507
CrossRef ADS Google scholar
[116]
A. Perali, P. Pieri, L. Pisani, and G. C. Strinati, BCS–BEC crossover at finite temperature for superfluid trapped Fermi atoms, Phys. Rev. Lett., 2004, 92(22): 220404
CrossRef ADS Google scholar
[117]
H. Hu, P. D. Drummond, and X. J. Liu, Universal thermodynamics of strongly interacting Fermi gases, Nat. Phys., 2007, 3(7): 469
CrossRef ADS Google scholar
[118]
K. Levin, Q. J. Chen, Y. He, and C.-C. Chien, Comparison of different pairing fluctuation approaches to BCS–BEC crossover, Ann. Phys., 2010, 325(2): 233
CrossRef ADS Google scholar
[119]
N. E. Bickers, D. J. Scalapino, and S. R. White, Conserving approximations for strongly correlated electron systems: Bethe–Salpeter equation and dynamics for the twodimensional hubbard model, Phys. Rev. Lett., 1989, 62: 961
CrossRef ADS Google scholar
[120]
N. E. Bickers and D. J. Scalapino, Conserving approximations for strongly fluctuating electron systems (I): Formalism and calculational approach, Ann. Phys., 1989, 193: 206
CrossRef ADS Google scholar
[121]
R. Haussmann, W. Rantner, S. Cerrito, and W. Zwerger, Thermodynamics of the BCS–BEC crossover, Phys. Rev. A, 2007, 75(2): 023610
CrossRef ADS Google scholar
[122]
Y. O. R. Watanabe and S. Tsuchiya, Superfluid density of states and pseudogap phenomenon in the BCS–BEC crossover regime of a superfluid Fermi gas, Phys. Rev. A, 2010, 82: 043630
CrossRef ADS Google scholar
[123]
P. Magierski, G. Wlazöwski, A. Bulgac, and J. E. Drut, Finite-temperature pairing gap of a unitary Fermi gas by quantum Monte Carlo calculations, Phys. Rev. Lett., 2009, 103(21): 210403
CrossRef ADS Google scholar
[124]
P. Pieri, A. Perali, G. C. Strinati, S. Riedl, M. J. Wright, A. Altmeyer, C. Kohstall, E. R. S. Guajardo, J. H. Denschlag, and R. Grimm, Pairing-gap, pseudogap, and no-gap phases in the radio-frequency spectra of a trapped unitary 6Li gas, Phys. Rev. A, 2011, 84: 011608(R)
CrossRef ADS Google scholar
[125]
L. P. Kadanoff and P. C. Martin, Theory of many-particle systems (II): Superconductivity, Phys. Rev., 1961, 124(3): 670
CrossRef ADS Google scholar
[126]
J. Stajic, J. N. Milstein, Q. J. Chen, M. L. Chiofalo, M. J. Holland, and K. Levin, Nature of superfluidity in ultracold Fermi gases near Feshbach resonances, Phys. Rev. A, 2004, 69(6): 063610
CrossRef ADS Google scholar
[127]
While a general interaction V(k−k′) may not be separable, it can however be de composed into different channels as V(k−k′)=∑lϕklϕk′l, where ϕkl represents s-, p-, d-wave channels, etc. In most cases, only one channel dominates the superfluid order so that we may neglect other channels. In this way, the use of a separable potential is justified.
[128]
S. J. J. M. F. Kokkelmans, J. N. Milstein, M. L. Chiofalo, R. Walser, and M. J. Holland, Resonance superfluidity: Renormalization of resonance scattering theory, Phys. Rev. A, 2002, 65(5): 053617
CrossRef ADS Google scholar
[129]
Here we will mainly discuss s-wave short range contact potential for atomic Fermi gases. At present, p-wave superfluids are not yet available experimentally in atomic Fermi gases.
[130]
H. Guo, C.-C. Chien, Q. J. Chen, Y. He, and K. Levin, Finite-temperature behavior of an interspecies fermionic superfluid with population imbalance, Phys. Rev. A, 2009, 80: 011601(R)
CrossRef ADS Google scholar
[131]
J. B. Wang, Y. M. Che, L. F. Zhang, and Q. J. Chen, Searching for the elusive exotic Fulde–Ferrell–Larkin–Ovchinnikov states in Fermi–Fermi mixtures of ultracold quantum gases, arXiv: 1404.5696, 2014
[132]
C.-C. Chien, Q. J. Chen, Y. He, and K. Levin, Intermediatetemperature superfluidity in an atomic Fermi gas with population imbalance, Phys. Rev. Lett., 2006, 97(9): 090402
CrossRef ADS Google scholar
[133]
C.-C. Chien, Q. J. Chen, Y. He, and K. Levin, Superfluid phase diagrams of trapped Fermi gases with population imbalance, Phys. Rev. Lett., 2007, 98(11): 110404
CrossRef ADS Google scholar
[134]
Q. J. Chen, Y. He, C.-C. Chien, and K. Levin, Theory of superfluids with population imbalance: Finite-temperature and BCS–BEC crossover effects, Phys. Rev. B, 2007, 75(1): 014521
CrossRef ADS Google scholar
[135]
J. B. Wang, H. Guo, and Q. J. Chen, Exotic phase separation and phase diagrams of a Fermi–Fermi mixture in a trap at finite temperature, Phys. Rev. A, 2013, 87: 041601(R)
CrossRef ADS Google scholar
[136]
K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, Observation of a strongly interacting degenerate Fermi gas of atoms, Science, 2002, 298(5601): 2179
CrossRef ADS Google scholar
[137]
T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. J. Kokkelmans, and C. Salomon, Experimental study of the BEC–BCS crossover region in lithium 6, Phys. Rev. Lett., 2004, 93(5): 050401
CrossRef ADS Google scholar
[138]
J. Carlson, S. Y. Chang, V. R. Pandharipande, and K. E. Schmidt, Superfluid Fermi gases with large scattering length, Phys. Rev. Lett., 2003, 91(5): 050401
CrossRef ADS Google scholar
[139]
I. Kosztin, Q. J. Chen, Y.-J. Kao, and K. Levin, Pair excitations, collective modes, and gauge invariance in the BCS-Bose–Einstein crossover scenario, Phys. Rev. B, 2000, 61(17): 11662
CrossRef ADS Google scholar
[140]
Q. J. Chen, Y. He, C.-C. Chien, and K. Levin, Stability conditions and phase diagrams for two-component Fermi gases with population imbalance, Phys. Rev. A, 2006, 74(6): 063603
CrossRef ADS Google scholar
[141]
In fact, the parameter γ can be taken from experiment, as has been done in Ref. [102], where one can find more details.
[142]
P. Pieri, L. Pisani, and G. C. Strinati, BCS–BEC crossover at finite temperature in the broken-symmetry phase, Phys. Rev. B, 2004, 70(9): 094508
CrossRef ADS Google scholar
[143]
N. Fukushima, Y. Ohashi, E. Taylor, and A. Griffin, Superfluid density and condensate fraction in the BCS–BEC crossover regime at finite temperatures, Phys. Rev. A, 2007, 75(3): 033609
CrossRef ADS Google scholar
[144]
I. Kosztin and A. J. Leggett, Nonlocal effects on the magnetic penetration depth in d-wave superconductors, Phys. Rev. Lett., 1997, 79(1): 135
CrossRef ADS Google scholar
[145]
S. Hufner, M. A. Hossain, A. Damaselli, and G. Sawatzky, Two gaps make a high-temperature superconductor? Rep. Prog. Phys., 2008, 71(6): 062501
CrossRef ADS Google scholar
[146]
G. Baskaran, Z. Zou, and P. W. Anderson, The resonating valence bond state and high-Tc superconductivity —A mean field theory, Solid State Commun., 1987, 63(11): 973
CrossRef ADS Google scholar
[147]
N. Miyakawa, J. Zasadzinski, L. Ozyuzer, P. Guptasarma, D. Hinks, C. Kendziora, and K. Gray, Predominantly superconducting origin of large energy gaps in underdoped Bi2Sr2CaCu2O8+δ from tunneling spectroscopy, Phys. Rev. Lett., 1999, 83(5): 1018
CrossRef ADS Google scholar
[148]
T.-L. Ho, Universal thermodynamics of degenerate quantum gases in the unitarity limit, Phys. Rev. Lett., 2004, 92(9): 090402
CrossRef ADS Google scholar
[149]
M. L. Chiofalo, S. J. J. M. F. Kokkelmans, J. N. Milstein, and M. J. Holland, Signatures of resonance superfluidity in a quantum Fermi gas, Phys. Rev. Lett., 2002, 88(9): 090402
CrossRef ADS Google scholar
[150]
Note here that the definition for nc and np differ from that in Ref. [156] by a factor of 2.
[151]
G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Momentum distribution and condensate fraction of a fermion gas in the BCS–BEC Crossover, Phys. Rev. Lett., 2005, 95: 230405 (Their result seems to suggest a tendency of decrease in the condensate fraction with an increasing particle number used for simulation.)
CrossRef ADS Google scholar
[152]
The curves in Fig. 19 were calculated using a two-channel model. Nevertheless, for wide Feshbach resonances such as in 6Li and 40K, the closed-channel fraction is very small [191, 192] so that the quantitative difference in the entropy s(r) between the two-channel and one-channel model is negligible.
[153]
Q. J. Chen, J. Stajic, and K. Levin, Thermodynamics of interacting fermions in atomic traps, Phys. Rev. Lett., 2005, 95(26): 260405
CrossRef ADS Google scholar
[154]
Q. J. Chen, C. A. Regal, M. Greiner, D. S. Jin, and K. Levin, Understanding the superfluid phase diagram in trapped Fermi gases, Phys. Rev. A, 2006, 73: 041601(R)
CrossRef ADS Google scholar
[155]
Note that the experimental data cannot be measuring Nc = N as shown in Fig. 18, since at 1/(kF a) = −1,Nc = N is far below the experimental threshold of detection.
[156]
J. Stajic, Q. J. Chen, and K. Levin, Density profiles of strongly interacting trapped Fermi gases, Phys. Rev. Lett., 2005, 94: 060401
CrossRef ADS Google scholar
[157]
While one may argue that the kink, if it exists, may be smoothed out by the ∫ dydz integration, we note that as of the time of this writing, no kink behavior has ever been reported in 3D density profiles obtained via an inverse Abel transformation of experimental data.
[158]
Q. J. Chen, C. A. Regal, D. S. Jin, and K. Levin, Finitetemperature momentum distribution of a trapped Fermi gas, Phys. Rev. A, 2006, 74: 011601(R)
CrossRef ADS Google scholar
[159]
Q. J. Chen, Y. He, C.-C. Chien, and K. Levin, Theory of radio frequency spectroscopy experiments in ultracold Fermi gases and their relation to photoemission in the cuprates, Rep. Prog. Phys., 2009, 72(12): 122501
CrossRef ADS Google scholar
[160]
C. H. Shunk, Y. Shin, A. Schirotzek, M. W. Zwierlein, and W. Ketterle, Determination of the fermion pair size in a resonantly interacting superfluid, Nature, 2008, 454(7205): 739
CrossRef ADS Google scholar
[161]
C. H. Schunk, Y. Shin, A. Schirotzek, M. W. Zwierlein, and W. Ketterle, Pairing without superfluidity: The ground state of an imbalanced Fermi mixture, Science, 2007, 316(5826): 867
CrossRef ADS Google scholar
[162]
Z. Yu and G. Baym, Spin-correlation functions in ultracold paired atomic-fermion systems: Sum rules, self-consistent approximations, and mean fields, Phys. Rev. A, 2006, 73(6): 063601
CrossRef ADS Google scholar
[163]
G. Baym, C. J. Pethick, Z. H. Yu, and M. W. Zwierlein, Coherence and clock shifts in ultracold Fermi gases with resonant interactions, Phys. Rev. Lett., 2007, 99(19): 190407
CrossRef ADS Google scholar
[164]
M. Punk and W. Zwerger, Theory of RF-spectroscopy of strongly interacting fermions, Phys. Rev. Lett., 2007, 99(17): 170404
CrossRef ADS Google scholar
[165]
A. Perali, P. Pieri, and G. C. Strinati, Competition between final-state and pairing-gap effects in the radio-frequency spectra of ultracold Fermi atoms, Phys. Rev. Lett., 2008, 100(1): 010402
CrossRef ADS Google scholar
[166]
S. Basu and E. J. Müller, Final-state effects in the radio frequency spectrum of strongly interacting fermions, Phys. Rev. Lett., 2008, 101(6): 060405
CrossRef ADS Google scholar
[167]
Y. He, C. C. Chien, Q. J. Chen, and K. Levin, Temperature and final state effects in radio frequency spectroscopy experiments on atomic Fermi gases, Phys. Rev. Lett., 2009, 102(2): 020402
CrossRef ADS Google scholar
[168]
M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas, arXiv: 1110.3309, 2011
[169]
E. Burovski, N. Prokof’ev, B. Svistunov, and M. Troyer, Critical temperature and thermodynamics of attractive fermions at unitarity, Phys. Rev. Lett., 2006, 96(16): 160402
CrossRef ADS Google scholar
[170]
E. Burovski, E. Kozik, N. Prokof’ev, B. Svistunov, and M. Troyer, Critical temperature curve in BEC–BCS crossover, Phys. Rev. Lett., 2008, 101(9): 090402
CrossRef ADS Google scholar
[171]
O. Goulko and M. Wingate, Thermodynamics of balanced and slightly spin-imbalanced Fermi gases at unitarity, Phys. Rev. A, 2010, 82(5): 053621
CrossRef ADS Google scholar
[172]
J. Kinnunen, M. Rodríguez, and P. Törmä, Pairing gap and in-gap excitations in trapped fermionic superfluids, Science, 2004, 305(5687): 1131
CrossRef ADS Google scholar
[173]
Y. He, Q. J. Chen, and K. Levin, Radio-frequency spectroscopy and the pairing gap in trapped Fermi gases, Phys. Rev. A, 2005, 72: 011602(R)
CrossRef ADS Google scholar
[174]
P. Massignan, G. M. Bruun, and H. T. C. Stoof, Twin peaks in RF spectra of Fermi gases at unitarity, Phys. Rev. A, 2008, 77: 031601(R)
CrossRef ADS Google scholar
[175]
J. T. Stewart, J. P. Gaebler, and D. S. Jin, Using photoemission spectroscopy to probe a strongly interacting Fermi gas, Nature, 2008, 454(7205): 744
CrossRef ADS Google scholar
[176]
Q. J. Chen and K. Levin, Momentum resolved radio frequency spectroscopy in trapped fermi gases, Phys. Rev. Lett., 2009, 102(19): 190402
CrossRef ADS Google scholar
[177]
D. S. Jin, Private communications; D.S. Jin, American Physical Society March Meeting Talk B8.00002, 2009
[178]
J. P. Gaebler, J. T. Stewart, T. E. Drake, D. S. Jin, A. Perali, P. Pieri, and G. C. Strinati, Observation of pseudogap behaviour in a strongly interacting Fermi gas, Nat. Phys., 2010, 6(8): 569
CrossRef ADS Google scholar
[179]
A. Perali, F. Palestini, P. Pieri, G. C. Strinati, J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Evolution of the normal state of a strongly interacting Fermi gas from a pseudogap phase to a molecular Bose gas, Phys. Rev. Lett., 2011, 106(6): 060402
CrossRef ADS Google scholar
[180]
A. Perali, P. Pieri, G. C. Strinati, and C. Castellani, Pseudogap and spectral function from superconducting fluctuations to the bosonic limit, Phys. Rev. B, 2002, 66(2): 024510
CrossRef ADS Google scholar
[181]
P. Pieri, L. Pisani, and G. C. Strinati, Pairing fluctuation effects on the single-particle spectra for the superconducting state, Phys. Rev. Lett., 2004, 92(11): 110401
CrossRef ADS Google scholar
[182]
Y. Shin, M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and W. Ketterle, Observation of phase separation in a strongly interacting imbalanced Fermi gas, Phys. Rev. Lett., 2006, 97(3): 030401
CrossRef ADS Google scholar
[183]
S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Exploring the thermodynamics of a universal Fermi gas, Nature, 2010, 463(7284): 1057
CrossRef ADS Google scholar
[184]
S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Fermi-liquid behavior of the normal phase of a strongly interacting gas of cold atoms, Phys. Rev. Lett., 2011, 106(21): 215303
CrossRef ADS Google scholar
[185]
L. P. Gor’kov and T. K. Melik-Barkhudarov, Contribution to the theory of superfluidity in an imperfect fermi gas, Sov. Phys. JETP, 1961, 13: 1018
[186]
H. Heiselberg, C. J. Pethick, H. Smith, and L. Viverit, Influence of induced interactions on the superfluid transition in dilute Fermi gases, Phys. Rev. Lett., 2000, 85(12): 2418
CrossRef ADS Google scholar
[187]
D. H. Kim, P. Törmä, and J.-P. Martikainen, Induced interactions for ultracold Fermi gases in optical lattices, Phys. Rev. Lett., 2009, 102(24): 245301
CrossRef ADS Google scholar
[188]
J. P. Martikainen, J. J. Kinnunen, P. Törmä, and C. J. Pethick, Induced interactions and the superfluid transition temperature in a three-component Fermi gas, Phys. Rev. Lett., 2009, 103(26): 260403
CrossRef ADS Google scholar
[189]
Z. Q. Yu, K. Huang, and L. Yin, Induced interaction in a Fermi gas with a BEC–BCS crossover, Phys. Rev. A, 2009, 79(5): 053636
CrossRef ADS Google scholar
[190]
Q. J. Chen, Effect of the particle-hole channel on BCS–Bose–Einstein condensation crossover in atomic Fermi gases, arXiv: 1109.2307, 2011
[191]
Q. J. Chen and K. Levin, Population of closed-channel molecules in trapped Fermi gases with broad Feshbach resonances, Phys. Rev. Lett., 2005, 95(26): 260406
CrossRef ADS Google scholar
[192]
G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and R. G. Hulet, Molecular probe of pairing in the BEC–BCS crossover, Phys. Rev. Lett., 2005, 95(2): 020404
CrossRef ADS Google scholar
[193]
H. Guo, C.-C. Chien, and K. Levin, Establishing the presence of coherence in atomic Fermi superfluids: Spin-flip and spin-preserving Bragg scattering at finite temperatures, Phys. Rev. Lett., 2010, 105(12): 120401
CrossRef ADS Google scholar
[194]
M. G. Lingham, K. Fenech, S. Hoinka, and C. J. Vale, Local observation of pair condensation in a Fermi gas at unitarity, Phys. Rev. Lett., 2014, 112(10): 100404
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1469 KB)

Accesses

Citations

Detail

Sections
Recommended

/