Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon

Wan-Ju Li, Dao-Xin Yao, E. W. Carlson

PDF(420 KB)
PDF(420 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 472-476. DOI: 10.1007/s11467-014-0415-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon

Author information +
History +

Abstract

Based on the phenomenon of curvature-induced doping in graphene we propose a class of Peltier cooling devices, produced by geometrical effects, without gating. We show how a graphene nanoribbon laid on an array of curved nano cylinders can be used to create a targeted and tunable cooling device. Using two different approaches, the Nonequilibrium Green’s Function (NEGF) method and experimental inputs, we predict that the cooling power of such a device can approach the order of kW/cm2, on par with the best known techniques using standard superlattice structures. The structure proposed here helps pave the way toward designing graphene electronics which use geometry rather than gating to control devices.

Graphical abstract

Keywords

Peltier cooling device / graphene nanoribbon / superlattice structure / graphene electronics / cooling power / Nonequilibrium Green’s Function (NEGF)

Cite this article

Download citation ▾
Wan-Ju Li, Dao-Xin Yao, E. W. Carlson. Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon. Front. Phys., 2014, 9(4): 472‒476 https://doi.org/10.1007/s11467-014-0415-3

References

[1]
G. H. Zeng, X. F. Fan, C. LaBounty, E. Croke, Y. Zhang, J. Christofferson, D. Vashaee, A. Shakouri, and J. E. Bowers, Cooling power density of SiGe/Si superlattice micro refrigerators, Volume 793 of Materials Research Society Symposium Proceedings, Materials Research Society, 2004
[2]
I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, On-chip cooling by superlattice-based thin-film thermoelectrics, Nat. Nanotechnol., 2009, 4(4): 235
CrossRef ADS Google scholar
[3]
X. Fan, G. Zeng, E. Croke, C. LaBounty, C. C. Ahn, D. Vashaee, A. Shakouri, and J. E. Bowers, High cooling power density SiGe/Si micro-coolers, Electron. Lett., 2001, 37(2): 126
CrossRef ADS Google scholar
[4]
A. Shakouri and Yan Zhang, On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Trans. Compon. Packag. Tech., 2005, 28(1): 65
CrossRef ADS Google scholar
[5]
J. Zhang, N. G. Anderson, and K. M. Lau, AlGaAs superlattice microcoolers, Appl. Phys. Lett., 2003, 83(2): 374
CrossRef ADS Google scholar
[6]
H. Y. Chiu, V. Perebeinos, Y. M. Lin, and P. Avouris, Controllable p-n junction formation in monolayer graphene using electrostatic substrate engineering, Nano Lett., 2010, 10(11): 4634
CrossRef ADS Google scholar
[7]
G. Liu, J. Velasco, and W. Bao, and C. N. Lau, Fabrication of graphene p-n-p junctions with contactless top gates., Appl. Phys. Lett., 2008, 92(20): 203103
CrossRef ADS Google scholar
[8]
S. G. Nam, D. K. Ki, J. W. Park, Y. Kim, J. S. Kim, and H. J. Lee, Ballistic transport of graphene p-n-p junctions with embedded local gates, Nanotechnology, 2011, 22(41): 415203
CrossRef ADS Google scholar
[9]
B. Öyilmaz, P. Jarillo-Herrero, D. Efetov, D. Abanin, L. Levitov, and P. Kim, Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions, Phys. Rev. Lett., 2007, 99(16): 166804
CrossRef ADS Google scholar
[10]
G. Rao, M. Freitag, H. Y. Chiu, R. S. Sundaram, and P. Avouris, Raman and photocurrent imaging of electrical stress-induced p-n junctions in graphene, ACS Nano, 2011, 5(7): 5848
CrossRef ADS Google scholar
[11]
J. R. Williams, L. DiCarlo, and C. M. Marcus, Quantum Hall effect in a gate-controlled p-n junction of graphene, Science, 2007, 317(5838): 638
CrossRef ADS Google scholar
[12]
T. Yu, C. W. Liang, C. Kim, and B. Yu, Local electrical stress-induced doping and formation of monolayer graphene P-N junction, Appl. Phys. Lett., 2011, 98(24): 243105
CrossRef ADS Google scholar
[13]
H. C. Cheng, R. J. Shiue, C. C. Tsai, W. H. Wang, and Y. T. Chen, High-quality graphene p-n junctions via resistfree fabrication and solution-based noncovalent functionalization, ACS Nano, 2011, 5(3): 2051
CrossRef ADS Google scholar
[14]
T. Lohmann, K. von Klitzing, and J. H. Smet, Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping, Nano Lett., 2009, 9(5): 1973
CrossRef ADS Google scholar
[15]
E. A. Kim and A. H. Castro Neto, Graphene as an electronic membrane, Europhys. Lett., 2008, 84(5): 57007
CrossRef ADS Google scholar
[16]
D. Rowe, Thermoelectrics Handbook: Macro to Nano, Boca Raton: CRC/Taylor and Francis, 2006
[17]
P. Wei, W. Z. Bao, Y. Pu, C. N. Lau, and J. Shi, Anomalous thermoelectric transport of Dirac particles in graphene, Phys. Rev. Lett., 2009, 102(16): 166808
CrossRef ADS Google scholar
[18]
S. Datta, Quantum Transport: Atom to transistor, Cambridge: Cambridge University Press, 2005
[19]
Y. Ouyang and J. Guo, A theoretical study on thermoelectric properties of graphene nanoribbons, Appl. Phys. Lett., 2009, 94(26): 263107
CrossRef ADS Google scholar
[20]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306(5696): 666
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(420 KB)

Accesses

Citations

Detail

Sections
Recommended

/