Nuclear magnetic moments in covariant density functional theory

Jian Li (李剑), J. Meng (孟杰)

PDF(1247 KB)
PDF(1247 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (6) : 132109. DOI: 10.1007/s11467-018-0842-7
REVIEW ARTICLE

Nuclear magnetic moments in covariant density functional theory

Author information +
History +

Abstract

Nuclear magnetic moment is an important physical variable and serves as a useful tool for the stringent test of nuclear models. For the past decades, the covariant density functional theory and its extension have been proved to be successful in describing the nuclear ground-states and excited states properties. However, a long-standing problem is its failure to predict magnetic moments. This article reviews the recent progress in the description of the nuclear magnetic moments within the covariant density functional theory. In particular, the magnetic moments of spherical odd-Anuclei with doubly closed shell core plus or minus one nucleon and deformed odd-Anuclei.

Keywords

nuclear magnetic moment / covariant density functional theory / meson exchange current / configuration mixing

Cite this article

Download citation ▾
Jian Li (李剑), J. Meng (孟杰). Nuclear magnetic moments in covariant density functional theory. Front. Phys., 2018, 13(6): 132109 https://doi.org/10.1007/s11467-018-0842-7

References

[1]
A. Arima, M. Harvey, and K. Shimizu, Pseudo LScoupling and pseudo SU3 coupling schemes, Phys. Lett. B 30(8), 517 (1969)
CrossRef ADS Google scholar
[2]
J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, and A. Arima, Pseudospin symmetry in relativistic mean field theory, Phys. Rev. C 58(2), R628 (1998)
CrossRef ADS Google scholar
[3]
J. Meng, K. Sugawara-Tanabe, S. Yamaji, and A. Arima, Pseudospin symmetry in Zr and Sn isotopes from the proton drip line to the neutron drip line, Phys. Rev. C 59(1), 154 (1999)
CrossRef ADS Google scholar
[4]
H. Liang, J. Meng, and S.-G. Zhou, Hidden pseudospin and spin symmetries and their origins in atomic nuclei, Phys. Rep. 570, 1 (2015)
CrossRef ADS Google scholar
[5]
A. Arima, K. Shimizu, W. Bentz, and H. Hyuga, Nuclear magnetic properties and gamow-teller transitions, Adv. Nucl. Phys. 18, 1 (1987)
[6]
A. Arima and H. Horie, Configuration mixing and magnetic moments of nuclei, Prog. Theor. Phys. 11(4), 509 (1954)
CrossRef ADS Google scholar
[7]
H. Horie and A. Arima, Configuration mixing and quadrupole moments of odd nuclei, Phys. Rev. 99(3), 778 (1955)
CrossRef ADS Google scholar
[8]
K. Shimizu, M. Ichimura, and A. Arima, Magnetic moments and GT-type β-decay matrix elements in nuclei with a LSdoubly closed shell plus or minus one nucleon, Nucl. Phys. A 226(2), 282 (1974)
CrossRef ADS Google scholar
[9]
J. Li, J. M. Yao, J. Meng, and A. Arima, One-pion exchange current corrections for nuclear magnetic moments in relativistic mean field theory, Prog. Theor. Phys. 125(6), 1185 (2011)
CrossRef ADS Google scholar
[10]
J. Li, J. Meng, P. Ring, J. M. Yao, and A. Arima, Relativistic description of second-order correction to nuclear magnetic moments with point-coupling residual interaction, Sci. China Phys. Mech. Astron. 54(2), 204 (2011)
CrossRef ADS Google scholar
[11]
J. Li, Y. Zhang, J. M. Yao, and J. Meng, Magnetic moments of 33Mg in the time-odd relativistic mean field approach, Sci. China Ser. G 52(10), 1586 (2009)
CrossRef ADS Google scholar
[12]
J. Wei, J. Li, and J. Meng, Relativistic descriptions of nuclear magnetic moments, Prog. Theor. Phys. Supp. 196, 400 (2012)
CrossRef ADS Google scholar
[13]
J. Li, J. X. Wei, J. N. Hu, P. Ring, and J. Meng, Relativistic description of magnetic moments in nuclei with doubly closed shells plus or minus one nucleon, Phys. Rev. C 88(6), 064307 (2013)
CrossRef ADS Google scholar
[14]
R. J. Blin-Stoyle, Theories of nuclear moments, Rev. Mod. Phys. 28(1), 75 (1956)
CrossRef ADS Google scholar
[15]
A. Arima, Nuclear magnetic moments and gamow-teller matrix elements — configuration mixing vs. mesonic effects, Prog. Part. Nucl. Phys. 1, 41 (1978)
CrossRef ADS Google scholar
[16]
A. Arima, Nuclear magnetic properties and gamowteller transitions, Prog. Part. Nucl. Phys. 11, 53 (1984)
CrossRef ADS Google scholar
[17]
I. S. Towner, Quenching of spin matrix elements in nuclei, Phys. Rep. 155(5), 263 (1987)
CrossRef ADS Google scholar
[18]
B. Castel and I. S. Towner, Modern Theories of Nuclear Moments, Oxford University Press, USA, 1990
[19]
I. Talmi, 55 years of the shell model: A challenge to nuclear many-body theory, Int. J. Mod. Phys. E 14(06), 821 (2005)
CrossRef ADS Google scholar
[20]
T. Schmidt, Über die magnetischen Momente der Atomkerne, Z. Phys. A 106(5–6), 358 (1937)
CrossRef ADS Google scholar
[21]
R. J. Blin-Stoyle, The magnetic moments of spin 1/2 Nuclei, Proc. Phys. Soc. A 66(12), 1158 (1953)
CrossRef ADS Google scholar
[22]
R. J. Blin-Stoyle and M. A. Perks, The deviations of nuclear magnetic moments from the schmidt lines, Proc. Phys. Soc. A 67(10), 885 (1954)
CrossRef ADS Google scholar
[23]
A. Arima and H. Horie, Configuration mixing and magnetic moments of odd nuclei, Prog. Theor. Phys. 12(4), 623 (1954)
[24]
H. Noya, A. Arima, and H. Horie, Nuclear moments and configuration mixing, Prog. Theor. Phys. Suppl. 8, 33 (1958)
CrossRef ADS Google scholar
[25]
H. Miyazawa, Deviations of nuclear magnetic moments from the Schmidt lines, Prog. Theor. Phys. 6(5), 801 (1951)
CrossRef ADS Google scholar
[26]
F. Villars, Exchange current effects in the Deuteron, Phys. Rev. 86(4), 476 (1952)
CrossRef ADS Google scholar
[27]
M. Chemtob, Two-body interaction currents and nuclear magnetic moments, Nucl. Phys. A 123(2), 449 (1969)
CrossRef ADS Google scholar
[28]
H. Hyuga, A. Arima, and K. Shimizu, Exchange magnetic moments, Nucl. Phys. A 336(3), 363 (1980)
CrossRef ADS Google scholar
[29]
M. Ichimura, The magnetic moments of nuclei with a closed shell plus or minus one nucleon, Nucl. Phys. 63(3), 401 (1965)
CrossRef ADS Google scholar
[30]
H. Mavromatis, First and second order corrections to the magnetic moments of nuclei using realistic interactions, Nucl. Phys. 80(3), 545 (1966)
CrossRef ADS Google scholar
[31]
H. Mavromatis, Magnetic moments of nuclei with closed j–jshells plus or minus one nucleon, Nucl. Phys. A 104(1), 17 (1967)
CrossRef ADS Google scholar
[32]
I. S. Towner and F. C. Khanna, Corrections to the single-particle M1 and gamow-teller matrix elements, Nucl. Phys. A 399(2), 334 (1983)
CrossRef ADS Google scholar
[33]
A. Arima, A short history of nuclear magnetic moments and GT transitions, Sci. China Phys. Mech. Astron. 54(2), 188 (2011)
CrossRef ADS Google scholar
[34]
N. J. Stone, D. Doran, M. Lindroos, J. Rikovska, M. Veskovic, et al., Magnetic moments of odd-ASb isotopes to 133Sb: Significant evidence for mesonic exchange current contributions and on core collective gfactors, Phys. Rev. Lett. 78(5), 820 (1997)
CrossRef ADS Google scholar
[35]
J. Rikovska, T. Giles, N. J. Stone, K. van Esbroeck, G. White, et al., First on-line beta-nMR on oriented nuclei: Magnetic dipole moments of the (νp1/2)–1 1/2 ground state in 67Ni and (πp3/2)+1 3/2 ground state in 69Cu, Phys. Rev. Lett. 85(7), 1392 (2000)
CrossRef ADS Google scholar
[36]
T. Ohtsubo, N. J. Stone, J. R. Stone, I. S. Towner, C. R. Bingham, et al., Magnetic dipole moment of the doubly-closed-shell plus one proton nucleus 49Sc, Phys. Rev. Lett. 109(3), 032504 (2012)
CrossRef ADS Google scholar
[37]
P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys. 37, 193 (1996)
CrossRef ADS Google scholar
[38]
D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, elativistic Hartree–Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure, Phys. Rep. 409(3–4), 101 (2005)
CrossRef ADS Google scholar
[39]
J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Relativistic continuum Hartree–Bogoliubov theory for ground-state properties of exotic nuclei, Prog. Part. Nucl. Phys. 57(3), 470 (2006)
CrossRef ADS Google scholar
[40]
J. Meng, J.-Y. Guo, J. Li, Z. P. Li, H. Z. Liang, W. H. Long, Y. F. Niu, Z. M. Niu, Y. Zhang, P. W. Zhao, and S. G. Zhou, Covariant density functional theory in nuclear physics, Prog. Phys. 31(4), 199 (2011)
[41]
T. Nikšić, D. Vretenar, and P. Ring, Relativistic nuclear energy density functionals: Mean-field and beyond, Prog. Part. Nucl. Phys. 66(3), 519 (2011)
CrossRef ADS Google scholar
[42]
J. Meng, Relativistic Density Functional for Nuclear Structure, World Scientific, Singapore, 2015
[43]
M. M. Sharma, G. A. Lalazissis, and P. Ring, Rho meson coupling in the relativistic mean field theory and description of exotic nuclei, Phys. Lett. B 317(4), 9 (1993)
CrossRef ADS Google scholar
[44]
S. G. Zhou, J. Meng, and P. Ring, Spin symmetry in the antinucleon spectrum, Phys. Rev. Lett. 91(3), 262501 (2003)
CrossRef ADS Google scholar
[45]
W. Koepf and P. Ring, A relativistic description of rotating nuclei: The yrast line of 20Ne, Nucl. Phys. A 493(1), 61 (1989)
CrossRef ADS Google scholar
[46]
J. König and P. Ring, Identical bands in superdeformed nuclei: A relativistic description, Phys. Rev. Lett. 71(19), 3079 (1993)
CrossRef ADS Google scholar
[47]
A. V. Afanasjev and P. Ring, Time-odd mean fields in the rotating frame: Microscopic nature of nuclear magnetism, Phys. Rev. C 62(3), 031302 (2000)
CrossRef ADS Google scholar
[48]
A. V. Afanasjev and H. Abusara, Time-odd mean fields in covariant density functional theory: Rotating systems, Phys. Rev. C 82(3), 034329 (2010)
CrossRef ADS Google scholar
[49]
P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Novel structure for magnetic rotation bands in 60Ni, Phys. Lett. B 699(3), 181 (2011)
CrossRef ADS Google scholar
[50]
P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Antimagnetic rotation band in nuclei: A microscopic description, Phys. Rev. Lett. 107(12), 122501 (2011)
CrossRef ADS Google scholar
[51]
J. Meng, J. Peng, S.-Q. Zhang, and P.-W. Zhao, Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation, Front. Phys. 8(1), 55 (2013)
CrossRef ADS Google scholar
[52]
L. D. Miller, Relativistic single-particle potentials for nuclei, Ann. Phys. 91(1), 40 (1975)
CrossRef ADS Google scholar
[53]
B. D. Serot, Elastic electron-nucleus scattering in a relativistic theory of nuclear structure, Phys. Lett. B 107(4), 263 (1981)
CrossRef ADS Google scholar
[54]
J. A. McNeil, R. D. Amado, C. J. Horowitz, M. Oka, J. R. Shepard, and D. A. Sparrow, Resolution of the magnetic moment problem in relativistic theories, Phys. Rev. C 34(2), 746 (1986)
CrossRef ADS Google scholar
[55]
S. Ichii, W. Bentz, A. Arima, and T. Suzuki, RPA type vertex corrections to isoscalar magnetic moments in the sigma-omega model, Phys. Lett. B 192(1–2), 11 (1987)
CrossRef ADS Google scholar
[56]
J. R. Shepard, E. Rost, C.-Y. Cheung, and J. A. Mc Neil, Magnetic response of closed shell±1 nuclei in Dirac-Hartree approximation, Phys. Rev. C 37(3), 1130 (1988)
CrossRef ADS Google scholar
[57]
U. Hofmann and P. Ring, A new method to calculate magnetic moments in relativistic mean field theories, Phys. Lett. B 214(3), 307 (1988)
CrossRef ADS Google scholar
[58]
R. J. Furnstahl and C. E. Price, Relativistic Hartree calculations of odd-Anuclei, Phys. Rev. C 40(3), 1398 (1989)
CrossRef ADS Google scholar
[59]
J. M. Yao, H. Chen, and J. Meng, Time-odd triaxial relativistic mean field approach for nuclear magnetic moments, Phys. Rev. C 74(2), 024307 (2006)
CrossRef ADS Google scholar
[60]
T. M. Morse, C. E. Price, and J. R. Shepard, Meson exchange current corrections to magnetic moments in quantum hadro-dynamics, Phys. Lett. B 251(2), 241 (1990)
CrossRef ADS Google scholar
[61]
R. J. Furnstahl and B. D. Serot, Nuclear currents in a relativistic mean field theory, Nucl. Phys. A 468(3–4), 539 (1987)
CrossRef ADS Google scholar
[62]
P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C 82(5), 054319 (2010)
CrossRef ADS Google scholar
[63]
T. Bürvenich, D. G. Madland, J. A. Maruhn, and P. G. Reinhard, Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model, Phys. Rev. C 65(4), 044308 (2002)
CrossRef ADS Google scholar
[64]
T. Nikšić, D. Vretenar, and P. Ring, Random-phase approximation based on relativistic point-coupling models, Phys. Rev. C 72(1), 014312 (2005)
CrossRef ADS Google scholar
[65]
J. Daoutidis and P. Ring, Continuum random-phase approximation for relativistic point coupling models, Phys. Rev. C 80(2), 024309 (2009)
CrossRef ADS Google scholar
[66]
C. De Conti, A. P. Galeão, and F. Krmpotić, Relativistic RPA for isobaric analogue and Gamow–Teller resonances in closed shell nuclei, Phys. Lett. B 444(2), 14 (1998)
CrossRef ADS Google scholar
[67]
N. Paar, T. Nikšić, D. Vretenar, and P. Ring, Quasiparticle random phase approximation based on the relativistic Hartree-Bogoliubov model (II): Nuclear spin and isospin excitations, Phys. Rev. C 69(5), 054303 (2004)
CrossRef ADS Google scholar
[68]
H. Z. Liang, N. V. Giai, and J. Meng, Spin-isospin resonances: A self-consistent covariant description, Phys. Rev. Lett 101(12), 122502 (2008)
CrossRef ADS Google scholar
[69]
B. D. Serot, Quantum hadrodynamics, Rep. Prog. Phys. 55(4), 1855 (1992)
CrossRef ADS Google scholar
[70]
W. Bentz, A. Arima, H. Hyuga, K. Shimizu, and K. Yazaki, Ward identity in the many-body system and magnetic moments, Nucl. Phys. A 436(4), 593 (1985)
CrossRef ADS Google scholar
[71]
R. J. Furnstahl, Convection currents in nuclei in a relativistic mean field theory, Phys. Rev. C 38(1), 370 (1988)
CrossRef ADS Google scholar
[72]
H. Ito and L. S. Kisslinger, Nuclear magnetic moments in the hybrid quark-hadron model, Ann. Phys. 174(1), 169 (1987)
CrossRef ADS Google scholar
[73]
W. H. Long, J. Meng, N. Van Giai, and S.-G. Zhou, New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent mesonnucleon coupling, Phys. Rev. C 69(3), 034319 (2004)
CrossRef ADS Google scholar
[74]
T. Yamazaki, T. Nomura, S. Nagamiya, and T. Katou, Anomalous orbital magnetism of proton deduced from the magnetic moment of the 11state of 210Po, Phys. Rev. Lett. 25(8), 547 (1970)
CrossRef ADS Google scholar
[75]
H. Horie and K. Sugimoto, Nuclear moments and nuclear structure, vol. 34 (J. Phys. Soc. Japan Suppl., 1973)
[76]
A. Green, A. Kallio, and K. Kolltveit, Odd parity excitations of 16O with a realistic nucleon-nucleon interaction, Phys. Lett. 14(2), 142 (1965)
CrossRef ADS Google scholar
[77]
V. Gillet, A. Green, and E. Sanderson, Particle-hole description of lead 208, Phys. Lett. 11(1), 44 (1964)
CrossRef ADS Google scholar
[78]
Y. E. Kim and J. O. Rasmussen, Energy levels of 210Bi and 210Po and the shell-model residual force, Nucl. Phys. 47, 184 (1963)
CrossRef ADS Google scholar
[79]
K. A. Brueckner and J. L. Gammel, Properties of Nuclear Matter, Phys. Rev. 109(4), 1023 (1958)
CrossRef ADS Google scholar
[80]
T. Hamada and I. Johnston, A potential model representation of two-nucleon data below 315 MeV, Nucl. Phys. 34(2), 382 (1962)
CrossRef ADS Google scholar
[81]
G. Bertsch, J. Borysowicz, H. McManus, and W. Love, Interactions for inelastic scattering derived from realistic potentials, Nucl. Phys. A 284(3), 399 (1977)
CrossRef ADS Google scholar
[82]
A. Arima and L. J. Huang-Lin, Magnetic moments of odd-mass nuclei with simple configurations, Phys. Lett. B 41(4), 435 (1972)
CrossRef ADS Google scholar
[83]
J. Blomqvist, N. Freed, and H. Zetterström, Magnetic moments of single particle states in 207Pb and 209Bi, Phys. Lett. 18(1), 47 (1965)
CrossRef ADS Google scholar
[84]
P. Ring and E. Werner, Distribution of single-particle strengths in the nuclei 207Tl, 207Pb, 209Bi and 209Pb, Nucl. Phys. A 211, 198 (1973)
CrossRef ADS Google scholar
[85]
V. Bernard and N. Van Giai, Effects of collective modes on the single-particle states and the effective mass in 208Pb, Nucl. Phys. A 348, 75 (1980)
CrossRef ADS Google scholar
[86]
E. Litvinova and P. Ring, Covariant theory of particlevibrational coupling and its effect on the single-particle spectrum, Phys. Rev. C 73(4), 044328 (2006)
CrossRef ADS Google scholar
[87]
P. Ring and E. Litvinova, Particle-vibrational coupling in covariant density-functional theory, Phys. At. Nucl. 72, 1285 (2009)
CrossRef ADS Google scholar
[88]
N. Stone, Tech. Rep., International Atomic Energy Agency, International Nuclear Data Committee, Vienna, Austria, 2014
[89]
G. Neyens, Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei, Rep. Prog. Phys. 66(4), 633 (2003)
CrossRef ADS Google scholar
[90]
A. Bohr and B. R. Mottelson, Nuclear Structure Volume II: Nuclear Deformation, W. A. Benjamin, Inc., 1975
[91]
E. K. Warburton, J. A. Becker, and B. A. Brown, Mass systematics for A= 29–44 nuclei: The deformed A~32 region, Phys. Rev. C 41(3), 1147 (1990)
CrossRef ADS Google scholar
[92]
S. Nummela, F. Nowacki, P. Baumann, E. Caurier, J. Cederkäll, et al., Intruder features in the island of inversion: The case of 33Mg, Phys. Rev. C 64(5), 054313 (2001)
CrossRef ADS Google scholar
[93]
B. V. Pritychenko, T. Glasmacher, P. D. Cottle, R. W. Ibbotson, K. W. Kemper, L. A. Riley, A. Sakharuk, H. Scheit, M. Steiner, and V. Zelevinsky, Structure of the “island of inversion” nucleus 33Mg, Phys. Rev. C 65(6), 061304 (2002)
CrossRef ADS Google scholar
[94]
Z. Elekes, Z. Dombradi, A. Saito, N. Aoi, H. Baba, et al., Proton inelastic scattering studies at the borders of the “island of inversion”: The 30,31Na and 33,34Mg case, Phys. Rev. C 73(4), 044314 (2006)
CrossRef ADS Google scholar
[95]
V. Tripathi, S. L. Tabor, P. F. Mantica, Y. Utsuno, P. Bender, et al., Intruder Configurations in the A= 33 isobars: 33Mg and 33Al, Phys. Rev. Lett. 101(14), 142504 (2008)
CrossRef ADS Google scholar
[96]
D. T. Yordanov, M. Kowalska, K. Blaum, M. D. Rydt, K. T. Flanagan, P. Lievens, R. Neugart, G. Neyens, and H. H. Stroke, Spin and magnetic moment of 33Mg: evidence for a negative-parity intruder ground State, Phys. Rev. Lett. 99(21), 212501 (2007)
CrossRef ADS Google scholar
[97]
R. D. Lawson, Theory of the Nuclear Shell Model, Oxford University Press, Oxford, 1980
[98]
M. Wang, G. Audi, F. Kondev, W. Huang, S. Naimi, and X. Xu, The AME2016 atomic mass evaluation (II): Tables, graphs and references, Chin. Phys. C 41(3), 030003 (2017)
CrossRef ADS Google scholar
[99]
H. Lü, L. S. Geng, and J. Meng, Constrained relativistic mean field approach with fixed configurations, Eur. Phys. J. A 31(3), 273 (2007)
CrossRef ADS Google scholar
[100]
E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker, The shell model as a unified view of nuclear structure, Rev. Mod. Phys. 77(2), 427 (2005)
CrossRef ADS Google scholar
[101]
Y. M. Zhao and A. Arima, Nucleon-pair approximation to the nuclear shell model, Phys. Rep. 545, 1 (2014)
CrossRef ADS Google scholar
[102]
B.-A. Bian, Y.-M. Di, G.-L. Long, Y. Sun, J.-Y. Zhang, and J. A. Sheikh, Systematics of g factors of 2+1 states in even-even nuclei from Gd to Pt: A microscopic description by the projected shell model, Phys. Rev. C 75(1), 014312 (2007)
CrossRef ADS Google scholar
[103]
R. Bauer, J. Speth, V. Klemt, P. Ring, E. Werner, and T. Yamazaki, Magnetic multipole moments and transition probabilities of single-particle states around 208Pb, Nucl. Phys. A 209(3), 535 (1973)
CrossRef ADS Google scholar
[104]
M. Rho, Quenching of axial-vector coupling constant in β-decay and pion-nucleus optical potential, Nucl. Phys. A 231, 493 (1974)
CrossRef ADS Google scholar
[105]
E. Oset and M. Rho, Axial currents in nuclei: The Gamow–Teller matrix element, Phys. Rev. Lett. 42(1), 47 (1979)
CrossRef ADS Google scholar
[106]
W. Knüpfer, M. Dillig, and A. Richter, Quenching of the magnetic multipole strength distribution and of the anomalous magnetic moment in complex nuclei and mesonic renormalization of the nuclear spin current, Phys. Lett. B 95(3–4), 349 (1980)
CrossRef ADS Google scholar
[107]
W. H. Long, N. Van Giai, and J. Meng, Densitydependent relativistic Hartree–Fock approach, Phys. Lett. B 640(4), 150 (2006)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1247 KB)

Accesses

Citations

Detail

Sections
Recommended

/