The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the temperature distribution and thermal stresses of the spread footing during the first seven days after concrete placement. The mechanical properties of early age concrete are calculated, which are further used in the FEM models. The possibilities of crack growth are estimated by the method of crack index. The crack indexes of quite a number of points are very close to the allowable limit of 1.0 during the last three days. It is also indicated that the influence of foundation ring on the thermal stresses of concrete can be neglected.
Most reinforced concrete(RC)frame structures did not achieve the “strong column-weak beam” failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To deal with this serious problem, a new column-beam relative factor was proposed to characterize the relative yield situation of column ends and beam ends. By limiting the column-beam relative factor, RC frame structures could achieve the “strong column-weak beam” failure mode under the excitation of strong ground motions. The limit values of column- beam relative factor were calculated, analyzed and verified by using structural simulation models for corner columns in the bottom story of structures, which are destroyed most seriously in earthquakes. The results show that the limit values should be analyzed under bi-directional ground motion and with different axial compression ratios of columns. The peak ground acceleration(PGA)of ground motions has no significant effect on the limit values, while the type of strong ground motions has a significant effect on the limit values.
The buckling response of pipe-in-pipe(PIP)systems subjected to bending is investigated in this paper. A set of parameterized models are established to explore the bending characteristics of the PIP systems through eigenvalue buckling analysis and nonlinear post-buckling analysis. The results show that the length of PIP systems and the height of centralizers are the most significant factors that influence the buckling moment, ultimate bending moment and buckling mode; the other geometric characteristics, such as initial geometric imperfection and friction between centralizers and outer pipes, evidently influence the post-buckling path and ductility of PIPs; the equivalent bending stiffness is dependent on the length and centralizers. Moreover, the range of equivalent bending stiffness is also discussed.
Central business district(CBD)construction is in rapid development phase at present, therefore, the firefighting work in CBD becomes an important issue for safety. In this paper, a fire risk assessment index system is established from the perspective of regional characteristics, possible sources and factors which influence the occurrence of fire. Analytic hierarchy process(AHP)is used to obtain the weights of different indexes so as to reflect their effects on the final fire risk assessment. Then, the fire risk of CBD in Binhai New Area of Tianjin is assessed with the help of the proposed model and ArcGIS technique. Finally, the fire station layout is optimized based on the discrete location model, realizing the reasonable allocation of firefighting resources. According to the analysis, super high-rise buildings and underground spaces are main factors that cause high fire risk; furthermore, five firstlevel fire stations can satisfy the requirement of rescue response time.
A framework for accelerating modern long-running astrophysical simulations is presented, which is based on a hierarchical architecture where computational steering in the high-resolution run is performed under the guide of knowledge obtained in the gradually refined ensemble analyses. Several visualization schemes for facilitating ensemble management, error analysis, parameter grouping and tuning are also integrated owing to the pluggable modular design. The proposed approach is prototyped based on the Flash code, and it can be extended by introducing user-defined visualization for specific requirements. Two real-world simulations, i.e., stellar wind and supernova remnant, are carried out to verify the proposed approach.
A low-power three-stage amplifier for driving large capacitive load is proposed. The feedback path formed by the active-feedback Miller capacitor leads to a high frequency complex-pole but a high Q-value, which significantly deteriorates the stability of the amplifier. The serial RC stage introduced as the second stage output load can optimize the resistor R z and the capacitor C z under fixed power and small compensation capacitor C a, which brings about a suitable Q-value of the complex-pole and the gain-bandwidth product extension of the amplifier. The amplifiers were designed and implemented in a standard 65 nm CMOS process with capacitive loads of 500 pF and 2 nF, respectively. The post-layout simulation results show that the amplifier driving the 500 pF capacitive load can achieve a gain of 113 dB, a phase margin of 50.6° and a gain-bandwidth product of 5.22 MHz while consuming 24 μW from a 1.2 V supply. For the 2 nF capacitive load, the amplifier has a gain of 102 dB, a phase margin of 52.8°, a gain-bandwidth product of 4.41 MHz and a power of 43 μW. The total compensation capacitors are equal to 1.13 pF and 1.03 pF. The better figures-of-merits are 108 750 and 205 113(MHz×pF/mW). The layout areas are 0.064 mm×0.026 mm and 0.063 mm×0.027 mm. Compared with the CFCC scheme, the gainbandwidth product is extended by 1.6 times at C L=500 pF and C a=1.1 pF.
Computed tomography (CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point spread function. The main advantage from multichannel blind CT image restoration is to exploit the diversity and redundancy of information in different acquisitions. The proposed approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is addressed with the alternating direction method of multipliers and simply implemented in the Fourier domain. Numerical experiments illustrate that our method obtains a higher average gain value of at least 1.21 dB in terms of Q metric than the other methods, and it requires only 7 iterations of alternating minimization to obtain a fast convergence.
Tomographic particle image velocimetry (Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional (3D) reconstruction for three-dimensional three-component (3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light intensity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique (ART) and multiple algebraic reconstruction technique (MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding reconstruction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image reconstruction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computational analyses of two parameters (the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.
The structure stiffness of presses has great effects on the forming precision of workpieces, especially in near-net or net shape forming. Conventionally the stiffness specification of presses is empirically determined, resulting in poor designs with insufficient or over sufficient stiffness of press structures. In this paper, an approach for the structure design of hydraulic presses is proposed, which is forming-precision-driven and can make presses costeffective by lightweight optimization. The approach consists of five steps:(1)the determination of the press stiffness specification in terms of the forming precision requirement of workpieces;(2)the conceptual design of the press structures according to the stiffness and workspace specifications, and the structure configuration of the press;(3)the prototype design of the press structures by equivalently converting the conceptual design to prototypes;( 4)the selection of key structure parameters by sensitivity analysis of the prototype design; and(5)the optimization of the prototype design. The approach is demonstrated and validated through a case study of the structure design of a 100 MN hydraulic press.
Passivity degradation of 304 stainless steel (SS) in simulated alkaline water chemistries at 300°C was investigated using polarization curve, scanning electron microscope, time-of-flight secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). Experimental results indicated that 304, SS was selfpassive in the test solution and the thickness of passive film was about 500 nm. Hydroxide was enriched in the outer layer whereas oxide was enriched in the inner layer. Sulfur in thiosulfate could be reduced into lower valence of sulfur and enter the passive film so that the composition of passive film was modified by sulfur. Fe and Cr were enriched in the passive film whereas Ni was depleted in the passive film.
The influences of Mn and Ni contents on the impact toughness and microstructure in the weld metals of high strength low alloy steels were studied. The objective of this study was to determine the optimum composition ranges of Mn and Ni to develop welding consumables with better resistance to cold cracking. The results indicated that Mn and Ni had considerable effect on the microstructure of weld metal, and both Mn and Ni promoted acicular ferrite at the expense of proeutectoid ferrite and ferrite side plates. Varying Ni content influenced the Charpy impact energy, the extent of which depended on Mn content. Based on the properties and impact resistance, the optimum levels of Mn and Ni were suggested to be 0.6%—0.9% and 2.5%—3.5% respectively. Additions beyond this limit promoted the formation of segregation structures and other microstructural features, which may be detrimental to weld metal toughness.