Decisions are often needed about the need and/or extent of protective measures against explosive blast loads on built infrastructure. A decision support analysis considers fatality risks and cost-effectiveness of protective measures expressed in terms of expected cost spent on risk reduction per life saved for terrorist threats to infrastructure. The analysis is applicable to any item of infrastructure, but in this paper is applied to casualties arising from building facade glazing damage. Risks may be compared with risk acceptance criteria in the form of quantitative safety goals. The risk acceptability and cost-effectiveness of protective measures includes cost of the protective measures, attack probability, reduction in risk due to protective measures, probability of fatality conditional on successful terrorist attack and number of exposed individuals.
Road side barriers are constructed to protect passengers and contain vehicles when a vehicle crashes into a barrier. In general, full-scale crash testing needs to be carried out if a geometrically and structurally equivalent barrier has not previously been proven to meet the requirements of containing the vehicle and dissipating sufficient impact energy for passenger protection. As full-scale crash testing is very expensive, the number of data that can be measured in a test is usually limited, and it may not always be possible to obtain good quality measurements in such a test, a reliable and efficient numerical simulation of crash testing is therefore very useful. This paper presents finite element simulations of a 3-rail steel road traffic barrier under vehicle impact. The performance levels defined in Australian Standards AS5100 Clause 10.5 for these barriers are checked. The numerical simulations show that the barrier is able to meet low performance levels. However, the maximum deceleration is higher than the acceptable limit for passenger protection. If present, a kerb launches the vehicles into the barrier, allowing for the possibility of overriding the barrier under certain circumstances, but it redirects the vehicle and reduces the incident angle, which reduces impact force on the barrier. Further investigation into all common kerb profiles on roads should be carried out, as only one kerb profile is investigated in this study.
Many engineering materials demonstrate dynamic enhancement of their compressive strength with the increase of strain-rate, which have been included in material models to improve the reliability of numerical simulations of the material and structural responses under impact and blast loads. The strain-rate effects on the dynamic compressive strength of a range of engineering materials which behave in hydrostatic-stress-sensitive manner were investigated. It is concluded that the dynamic enhancement of the compressive strength of a hydrostatic-stress-sensitive material may include inertia-induced lateral confinement effects, which, as a non-strain-rate factor, may greatly enhance the compressive strength of these materials. Some empirical formulae based on the dynamic stress-strain measurements over-predict the strain-rate effects on the compressive strength of these hydrostatic-stress-sensitive materials, and thus may over-estimate the structural resistance to impact and blast loads, leading to non-conservative design of protective structures.
Progressive collapse of building structures under blast and impact loads has attracted great attention all over the world. Progressive collapse analysis is essential for an economic and safe design of building structures against progressive collapse to blast and impact loads. Because of the catastrophic nature of progressive collapse and the potentially high cost of constructing or retrofitting buildings to resist it, it is imperative that the progressive collapse analysis methods be reliable. For engineers, their methodology to carry out progressive collapse evaluation need not only be accurate and concise, but also be easily used and works fast. Thus, many researchers have been spending lots of effort in developing reliable, efficient and straightforward progressive collapse analysis methods recently. In the present paper, current progressive collapse analysis methods available in the literature are reviewed. Their suitability, applicability and reliability are discussed. Our recent proposed new method for progressive collapse analysis of reinforced concrete frames under blast loads is also introduced.
The expansion joints are expected to have movement capacity, bearing capacity for static and dynamic loading, water-tightness, low noise emission and traffic safety. In particular, the failure due to impact loading is the main reason for the observed damages. The problem of dynamic behavior of the expansion joints is so complex that we shall focus our attention on the impact factor for vehicle load that is governed by traffic impact. In order to overcome this difficulty, the cantilever-toothed aluminum joint (finger joint) is one of the promising joints under impact loading. In this study, from the viewpoint of design methodology, numerical studies for impact behavior were conducted for aluminum alloy expansion joints with perforated dowels. The design impact factor for the expansion joints with the perforated dowels against traffic impact loading was examined by using numerical simulations.
Current guidelines recommend using single-degree-of-freedom(SDOF) method for dynamic analysis of reinforced concretec (RC) structures against blast loads, which is not suitable for retrofitted members. Thus, a finite difference procedure developed in another study was used to accurately and efficiently analyze the dynamic response of fibre reinforced polymer (FRP) plated members under blast loads. It can accommodate changes in the mechanical properties of a member’s cross section along its length and through its depth in each time step, making it possible to directly incorporate both strain rate effects (which will vary along the length and depth of a member) and non-uniform member loading to solve the partial differential equation of motion. The accuracy of the proposed method was validated in part using data from field blast testing. The finite difference procedure is implemented easily and enables accurate predictions of FRP-platedmember response.
Current practice in analysis and design of blast doors subjected to blast loading considers only simple boundary conditions and material properties. The boundary conditions and material properties, in fact, have considerable influence on the response of blast doors subjected to blast loading. In this paper, the dynamic responses of a reinforced concrete arched blast door under blast loading were analyzed by the finite element program ABAQUS, combined with a previously developed elasto-viscoplastic rate-sensitive material model. And the effect of the surrounding rock mass and contact effect of the doorframe were also taken into account in the simulation. It is demonstrated that the strain-rate effect has considerable influence on the response of reinforced concrete blast door subjected to blast loading and must be taken into account in the analysis.
The soil-structure interaction (SSI) decoupling is applied to simplify buried structure against internal blast load as spring effect. Shear failure, bending failure and combined failure modes are considered based on five transverse velocity profiles for the rigid-plastic structural element. The critical equations for shear and bending failure are derived respectively. Pressure-impulse diagrams are accordingly developed to assess damage of the buried structures against internal blast load. Comparison is done to show influences of soil-structure interaction and shear-to-bending strength ratio of a structural element. A case study is conducted to show the application of damage assessment to a reinforced concrete beam element of buried structure.
The explosion inside tunnel would generate blast wave which transmits through the longitudinal tunnel. Because of the close-in effects of the tunnel and the reflection by the confining tunnel structure, blast wave propagation inside tunnel is distinguished from that in air. When the explosion happens inside tunnel, the overpressure peak is higher than that of explosion happening in air. The continuance time of the blast wave also becomes longer. With the help of the numerical simulation finite element software LS-DYNA, a three-dimensional nonlinear dynamic simulation analysis for an explosion experiment inside tunnel was carried out. LS-DYNA is a fully integrated analysis program specifically designed for nonlinear dynamics and large strain problems. Compared with the experimental results, the simulation results have made the material parameters of numerical simulation model available. By using the model and the same material parameters, many results were adopted by calculating the model under different TNT explosion dynamites. Then the method of dimensional analysis was used for the simulation results. As overpressures of the explosion blast wave are the governing factor in the tunnel responses, a formula for the explosion blast wave overpressure at a certain distance from the detonation center point inside the tunnel was derived by using the dimensional analysis theory. By comparing the results computed by the formula with experimental results which were obtained before, the formula was proved to be very applicable at some instance. The research may be helpful to estimate rapidly the effect of internal explosion of tunnel on the structure.
Based on the constructing thought of the displacement model of isoparametric finite element, an extended interpolating algorithm is deduced for calculating the overpressure history of an optional point on the walls of the rectangle-section tunnel under an optional point-explosion in its internal space. According to the working principle, the overpressure histories of all nodes on the walls of a tunnel with the equal width and height of 2 m, induced by a reference-charge explosion at each node in this tunnel’s cross section, are computed using the LS-DYNA software, and then are gathered to establish a reference database, which makes it possible to set optionally the positions of the explosive and the overpressure-observed point. In addition, some variation factors of peak values and durations of overpressure on the walls, reflecting some changes on the charge weight and the sizes of width and height of the section, are included in this algorithm in order to simulate approximately the overpressure responses on the walls under the optional charge weight and cross-section size. Some example analyses indicate the rapidity and validity of this method, and therefore this will bring it a good prospect in engineering application.
To study the bending strength of mass concrete under dynamic loading, the pure bending zone of three-graded concrete beam is considered as a three-phase composite composed of matrix, aggregate and interface between them on meso-level. Dynamic constitutive model considering strain-rate strengthening effect and damage softening effect is adopted to describe the cocrete and meso-element’s damage. The failure mechanisms of beam under impact loading, triagle wave load, dynamic load coupling with initial static loading were simulated by using displacement-controlled FEM. Furthermore, stress-strain curve of the specimens and their dynamic bending strength were obtained. The results obtained from numerical simulation agreed well with experimental data.
A meshless local discontinuous Petrov-Galerkin (MLDPG) method based on the local symmetric weak form (LSWF) is presented with the application to blasting problems. The derivation is similar to that of mesh-based Runge-Kutta Discontinuous Galerkin (RKDG) method. The solutions are reproduced in a set of overlapped spherical sub-domains, and the test functions are employed from a partition of unity of the local basis functions. There is no need of any traditional nonoverlapping mesh either for local approximation purpose or for Galerkin integration purpose in the presented method. The resulting MLDPG method is a meshless, stable, high-order accurate and highly parallelizable scheme which inherits both the advantages of RKDG and meshless method (MM), and it can handle the problems with extremely complicated physics and geometries easily. Three numerical examples of the one-dimensional Sod shock-tube problem, the blast-wave problem and the Woodward-Colella interacting shock wave problem are given. All the numerical results are in good agreement with the closed solutions. The higher-order MLDPG schemes can reproduce more accurate solution than the lower-order schemes.
Anti-ram bollards used in perimeter protection are tested to meet performance requirements of established standards such as the US Department of State Specification SD-STD-02.01. Under these standards, tests are conducted in prescribed conditions that should be representative of the service installation. In actual project, conditions encountered on site may vary from the test environment and it would be expensive and time consuming to validate each deviation with a physical test. High-fidelity physics-based (HFPB) finite element modeling can provide precise simulations of the behavior of anti-ram bollards. This paper presents the use of HFPB finite element modeling, using LS-DYNA, in an actual project to evaluate the performance of an anti-ram bollard design subjected to various boundary conditions representing the physical conditions encountered on site. The study shows that boundary conditions can have a significant influence on the performance of the anti-ram bollards. This suggests that anti-ram bollards must be designed and engineered according to actual conditions that are found on site. It also shows that HFPB modeling can be an effective tool that supplements physical testing of anti-ram bollards.
The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method. Using the modified SPH algorithm, a series of one-dimensional planar wave propagation problems were investigated, focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water. The numerical results showed that water mitigation effect is significant. Up to 60% shock wave pressure reduction could be achieved with the existence of water, and the shape of shock wave was also changed greatly. It is seemly that the small air-gap between the high-pressure air and water has more influence on water mitigation effect.