Heterogeneous Catalysis for CO2 Conversion into Chemicals and Fuels

Dunfeng Gao , Wanjun Li , Hanyu Wang , Guoxiong Wang , Rui Cai

Transactions of Tianjin University ›› 2022, Vol. 28 ›› Issue (4) : 245 -264.

PDF
Transactions of Tianjin University ›› 2022, Vol. 28 ›› Issue (4) : 245 -264. DOI: 10.1007/s12209-022-00326-x
Review

Heterogeneous Catalysis for CO2 Conversion into Chemicals and Fuels

Author information +
History +
PDF

Abstract

Catalytic conversion of CO2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis, electrocatalysis, and photo(electro)catalysis, CO2 can be converted into a wide range of valuable products, including CO, formic acid, methanol, methane, ethanol, acetic acid, propanol, light olefins, aromatics, and gasoline, as well as fine chemicals. In this mini-review, we summarize the recent progress in heterogeneous catalysis for CO2 conversion into chemicals and fuels and highlight some representative studies of different conversion routes. The structure–performance correlations of typical catalytic materials used for the CO2 conversion reactions have been revealed by combining advanced in situ/operando spectroscopy and microscopy characterizations and density functional theory calculations. Catalytic selectivity toward a single CO2 reduction product/fraction should be further improved at an industrially relevant CO2 conversion rate with considerable stability in the future.

Graphical Abstract

Keywords

CO2 conversion / CO2 hydrogenation / CO2 electroreduction / Chemicals / Fuels

Cite this article

Download citation ▾
Dunfeng Gao, Wanjun Li, Hanyu Wang, Guoxiong Wang, Rui Cai. Heterogeneous Catalysis for CO2 Conversion into Chemicals and Fuels. Transactions of Tianjin University, 2022, 28(4): 245-264 DOI:10.1007/s12209-022-00326-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Artz J, Müller TE, Thenert K, et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev, 2018, 118(2): 434-504.

[2]

Burkart MD, Hazari N, Tway CL, et al. Opportunities and challenges for catalysis in carbon dioxide utilization. ACS Catal, 2019, 9(9): 7937-7956.

[3]

Tackett BM, Gomez E, Chen JG Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat Catal, 2019, 2(5): 381-386.

[4]

Ling YF, Ma QL, Yu YF, et al. Optimization strategies for selective CO2 electroreduction to fuels. Trans Tianjin Univ, 2021, 27(3): 180-200.

[5]

Gao P, Li SG, Bu XN, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat Chem, 2017, 9(10): 1019-1024.

[6]

Cai T, Sun HB, Qiao J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373(6562): 1523-1527.

[7]

Xu LY, Wang QX, Lin LW, et al. Production of light olefins from CO2 hydrogenation over Fe/silicalite-2 catalysts I. Catalytic reactivity and reaction mechanism. J Nat Gas Chem, 1997, 6(2): 111-120.

[8]

Gao DF, Zhou H, Wang J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc, 2015, 137(13): 4288-4291.

[9]

Tang LQ, Chen RT, Meng XG, et al. Unique homo-heterojunction synergistic system consisting of stacked BiOCl nanoplate/Zn-Cr layered double hydroxide nanosheets promoting photocatalytic conversion of CO2 into solar fuels. Chem Commun, 2018, 54(40): 5126-5129.

[10]

Yang F, Deng DH, Pan XL, et al. Understanding nano effects in catalysis. Natl Sci Rev, 2015, 2(2): 183-201.

[11]

Su X, Yang XF, Huang YQ, et al. Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc Chem Res, 2019, 52(3): 656-664.

[12]

Shih CF, Zhang T, Li JH, et al. Powering the future with liquid sunshine. Joule, 2018, 2(10): 1925-1949.

[13]

Tian P, Wei YX, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal, 2015, 5(3): 1922-1938.

[14]

Liang BL, Ma JG, Su X, et al. Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol. Ind Eng Chem Res, 2019, 58(21): 9030-9037.

[15]

Sha F, Han Z, Tang S, et al. Hydrogenation of carbon dioxide to methanol over non-Cu-based heterogeneous catalysts. Chemsuschem, 2020, 13(23): 6160-6181.

[16]

Yu JF, Yang M, Zhang JX, et al. Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol. ACS Catal, 2020, 10(24): 14694-14706.

[17]

Wang WW, Qu ZP, Song LX, et al. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction. J Energy Chem, 2020, 40: 22-30.

[18]

Wang WW, Qu ZP, Song LX, et al. An investigation of Zr/Ce ratio influencing the catalytic performance of CuO/Ce1- xZr xO2 catalyst for CO2 hydrogenation to CH3OH. J Energy Chem, 2020, 47: 18-28.

[19]

Wang WW, Qu ZP, Song LX, et al. Probing into the multifunctional role of copper species and reaction pathway on copper-cerium-zirconium catalysts for CO2 hydrogenation to methanol using high pressure in situ DRIFTS. J Catal, 2020, 382: 129-140.

[20]

Wang JJ, Lu SM, Li J, et al. A remarkable difference in CO2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes. Chem Commun, 2015, 51(99): 17615-17618.

[21]

Xu JH, Su X, Liu XY, et al. Methanol synthesis from CO2 and H2 over Pd/ZnO/Al2O3: catalyst structure dependence of methanol selectivity. Appl Catal A Gen, 2016, 514: 51-59.

[22]

Wang JJ, Li GN, Li ZL, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci Adv, 2017, 3(10

[23]

Han Z, Tang CZ, Sha F, et al. CO2 hydrogenation to methanol on ZnO-ZrO2 solid solution catalysts with ordered mesoporous structure. J Catal, 2021, 396: 242-250.

[24]

Han Z, Tang CZ, Wang JJ, et al. Atomically dispersed Pt n + species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation. J Catal, 2021, 394: 236-244.

[25]

Hu JT, Yu L, Deng J, et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat Catal, 2021, 4(3): 242-250.

[26]

Wang JJ, Meeprasert J, Han Z, et al. Highly dispersed Cd cluster supported on TiO2 as an efficient catalyst for CO2 hydrogenation to methanol. Chin J Catal, 2022, 43(3): 761-770.

[27]

Liu QG, Yang XF, Li L, et al. Direct catalytic hydrogenation of CO2 to formate over a Schiff-base-mediated gold nanocatalyst. Nat Commun, 2017, 8: 1407.

[28]

Shao XZ, Yang XF, Xu JM, et al. Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem, 2019, 5(3): 693-705.

[29]

Pan XL, Jiao F, Miao DY, et al. Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis. Chem Rev, 2021, 121(11): 6588-6609.

[30]

Su X, Xu JH, Liang BL, et al. Catalytic carbon dioxide hydrogenation to methane: a review of recent studies. J Energy Chem, 2016, 25(4): 553-565.

[31]

Lin QQ, Liu XY, Jiang Y, et al. Crystal phase effects on the structure and performance of ruthenium nanoparticles for CO2 hydrogenation. Catal Sci Technol, 2014, 4(7): 2058-2063.

[32]

Xu JH, Su X, Duan HM, et al. Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation. J Catal, 2016, 333: 227-237.

[33]

Gao LJ, Fu Q, Wei MM, et al. Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells. ACS Catal, 2016, 6(10): 6814-6822.

[34]

Pan QS, Peng JX, Sun TJ, et al. Insight into the reaction route of CO2 methanation: promotion effect of medium basic sites. Catal Commun, 2014, 45: 74-78.

[35]

Pan QS, Peng JX, Wang S, et al. In situ FTIR spectroscopic study of the CO2 methanation mechanism on Ni/Ce0.5Zr0.5O2. Catal Sci Technol, 2014, 4(2): 502-509.

[36]

Gao J, Jiang Q, Liu YF, et al. Probing the enhanced catalytic activity of carbon nanotube supported Ni-LaO x hybrids for the CO2 reduction reaction. Nanoscale, 2018, 10(29): 14207-14219.

[37]

Li J, Lin YP, Pan XL, et al. Enhanced CO2 methanation activity of Ni/anatase catalyst by tuning strong metal-support interactions. ACS Catal, 2019, 9(7): 6342-6348.

[38]

Ye RP, Liao L, Reina TR, et al. Engineering Ni/SiO2 catalysts for enhanced CO2 methanation. Fuel, 2021, 285.

[39]

Liao L, Chen LD, Ye RP, et al. Robust nickel silicate catalysts with high Ni loading for CO2 methanation. Chem Asian J, 2021, 16(6): 678-689.

[40]

Zhang YR, Zhang Z, Yang XF, et al. Tuning selectivity of CO2 hydrogenation by modulating the strong metal–support interaction over Ir/TiO2 catalysts. Green Chem, 2020, 22(20): 6855-6861.

[41]

Zhang YR, Yan WJ, Qi HF, et al. Strong metal-support interaction of Ru on TiO2 derived from the co-reduction mechanism of Ru xTi1- xO2 interphase. ACS Catal, 2022, 12(3): 1697-1705.

[42]

Xin H, Lin L, Li RT, et al. Overturning CO2 hydrogenation selectivity with high activity via reaction-induced strong metal-support interactions. J Am Chem Soc, 2022, 144(11): 4874-4882.

[43]

Chen XD, Su X, Su HY, et al. Theoretical insights and the corresponding construction of supported metal catalysts for highly selective CO2 to CO conversion. ACS Catal, 2017, 7(7): 4613-4620.

[44]

Li XY, Lin J, Li L, et al. Controlling CO2 hydrogenation selectivity by metal-supported electron transfer. Angew Chem Int Ed, 2020, 59(45): 19983-19989.

[45]

Zhang XB, Han SB, Zhu BE, et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat Catal, 2020, 3(4): 411-417.

[46]

Guo LS, Sun J, Ji XW, et al. Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts. Commun Chem, 2018, 1: 11.

[47]

Liang BL, Duan HM, Sun T, et al. Effect of Na promoter on Fe-based catalyst for CO2 hydrogenation to alkenes. ACS Sustain Chem Eng, 2019, 7(1): 925-932.

[48]

Han Y, Fang CY, Ji XW, et al. Interfacing with carbonaceous potassium promoters boosts catalytic CO2 hydrogenation of iron. ACS Catal, 2020, 10(20): 12098-12108.

[49]

Yao RW, Wei J, Ge QJ, et al. Monometallic iron catalysts with synergistic Na and S for higher alcohols synthesis via CO2 hydrogenation. Appl Catal B Environ, 2021, 298.

[50]

Lohr TL, Marks TJ Orthogonal tandem catalysis. Nat Chem, 2015, 7(6): 477-482.

[51]

Wei J, Sun J, Wen ZY, et al. New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins. Catal Sci Technol, 2016, 6(13): 4786-4793.

[52]

Liang BL, Sun T, Ma JG, et al. Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins. Catal Sci Technol, 2019, 9(2): 456-464.

[53]

Jiao F, Li JJ, Pan XL, et al. Selective conversion of syngas to light olefins. Science, 2016, 351(6277): 1065-1068.

[54]

Li J, Yu T, Miao DY, et al. Carbon dioxide hydrogenation to light olefins over ZnO-Y2O3 and SAPO-34 bifunctional catalysts. Catal Commun, 2019, 129.

[55]

Li ZL, Wang JJ, Qu YZ, et al. Highly selective conversion of carbon dioxide to lower olefins. ACS Catal, 2017, 7(12): 8544-8548.

[56]

Ni YM, Chen ZY, Fu Y, et al. Selective conversion of CO2 and H2 into aromatics. Nat Commun, 2018, 9: 3457.

[57]

Li ZL, Qu YZ, Wang JJ, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts. Joule, 2019, 3(2): 570-583.

[58]

Wei J, Yao RW, Ge QJ, et al. Precisely regulating Brønsted acid sites to promote the synthesis of light aromatics via CO2 hydrogenation. Appl Catal B Environ, 2021, 283.

[59]

Zhu PF, Sun J, Yang GH, et al. Tandem catalytic synthesis of benzene from CO2 and H2. Catal Sci Technol, 2017, 7(13): 2695-2699.

[60]

Wei J, Ge QJ, Yao RW, et al. Directly converting CO2 into a gasoline fuel. Nat Commun, 2017, 8: 15174.

[61]

Wei J, Yao RW, Ge QJ, et al. Catalytic hydrogenation of CO2 to isoparaffins over Fe-based multifunctional catalysts. ACS Catal, 2018, 8(11): 9958-9967.

[62]

Noreen A, Li MQ, Fu YJ, et al. One-pass hydrogenation of CO2 to multibranched isoparaffins over bifunctional zeolite-based catalysts. ACS Catal, 2020, 10(23): 14186-14194.

[63]

Wei J, Yao RW, Han Y, et al. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem Soc Rev, 2021, 50(19): 10764-10805.

[64]

Ye X, Yang CY, Pan XL, et al. Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst. J Am Chem Soc, 2020, 142(45): 19001-19005.

[65]

Ye X, Ma JG, Yu WG, et al. Construction of bifunctional single-atom catalysts on the optimized β-Mo2C surface for highly selective hydrogenation of CO2 into ethanol. J Energy Chem, 2022, 67: 184-192.

[66]

Yao SD, Gu LJ, Sun CY, et al. Combined methane CO2 reforming and dehydroaromatization for enhancing the catalyst stability. Ind Eng Chem Res, 2009, 48(2): 713-718.

[67]

Zhang JC, Ge BH, Liu TF, et al. Robust ruthenium-saving catalyst for high-temperature carbon dioxide reforming of methane. ACS Catal, 2020, 10(1): 783-791.

[68]

Dong JH, Fu Q, Li HB, et al. Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets. J Am Chem Soc, 2020, 142(40): 17167-17174.

[69]

Wang YH, Zhang ZX, Lei LJ, et al. Defect-dependent selective C-H/C–C bond cleavage of propane in the presence of CO2 over FeNi/ceria catalysts. ACS Sustain Chem Eng, 2021, 9(51): 17301-17309.

[70]

Wang JP, Liu M, Li JJ, et al. Elucidating the active-phase evolution of Fe-based catalysts during isobutane dehydrogenation with and without CO2 in feed gas. ACS Catal, 2022, 12(10): 5930-5938.

[71]

Jeong MH, Lee DH, Moon JW, et al. Oxidative dehydrogenation of ethane and subsequent CO2 activation on Ce-incorporated FeTiO x metal oxides. Chem Eng J, 2022, 433.

[72]

Jiang QQ, Chen ZP, Tong JH, et al. Direct thermolysis of CO2 into CO and O2. Chem Commun, 2017, 53(6): 1188-1191.

[73]

Jiang QQ, Chen ZP, Tong JH, et al. Catalytic function of IrO x in the two-step thermochemical CO2-splitting reaction at high temperatures. ACS Catal, 2016, 6(2): 1172-1180.

[74]

Li H, Goldbach A, Li WZ, et al. CO2 decomposition over Pd membrane surfaces. J Phys Chem B, 2008, 112(39): 12182-12184.

[75]

Zhao GD, Zhang Y, Zhang HY, et al. Direct synthesis of propylene carbonate from propylene and carbon dioxide catalyzed by quaternary ammonium heteropolyphosphatotungstate-TBAB system. J Energy Chem, 2015, 24(3): 353-358.

[76]

Chen YD, Wang H, Qin ZX, et al. Ti xCe1– xO2 nanocomposites: a monolithic catalyst for the direct conversion of carbon dioxide and methanol to dimethyl carbonate. Green Chem, 2019, 21(17): 4642-4649.

[77]

Wang WL, Wang YQ, Li CY, et al. State-of-the-art multifunctional heterogeneous POP catalyst for cooperative transformation of CO2 to cyclic carbonates. ACS Sustain Chem Eng, 2017, 5(6): 4523-4528.

[78]

Jayakumar S, Li H, Tao L, et al. Cationic Zn-porphyrin immobilized in mesoporous silicas as bifunctional catalyst for CO2 cycloaddition reaction under cocatalyst free conditions. ACS Sustain Chem Eng, 2018, 6: 9237-9245.

[79]

Chen J, Zhong MM, Tao L, et al. The cooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficient CO2 cycloaddition reaction. Green Chem, 2018, 20(4): 903-911.

[80]

Liu L, Jayakumar S, Chen J, et al. Synthesis of bifunctional porphyrin polymers for catalytic conversion of dilute CO2 to cyclic carbonates. ACS Appl Mater Interfaces, 2021, 13(25): 29522-29531.

[81]

Wu ZL, Sun L, Liu QG, et al. A Schiff base-modified silver catalyst for efficient fixation of CO2 as carboxylic acid at ambient pressure. Green Chem, 2017, 19(9): 2080-2085.

[82]

Wu ZL, Liu QG, Yang XF, et al. Knitting aryl network polymers-incorporated Ag nanoparticles: a mild and efficient catalyst for the fixation of CO2 as carboxylic acid. ACS Sustain Chem Eng, 2017, 5(11): 9634-9639.

[83]

Wang GQ, Jiang M, Ji GJ, et al. Bifunctional heterogeneous Ru/POP catalyst embedded with alkali for the N-formylation of amine and CO2. ACS Sustain Chem Eng, 2020, 8(14): 5576-5583.

[84]

Chen C, Zhu XR, Wen XJ, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat Chem, 2020, 12(8): 717-724.

[85]

de Luna P, Hahn C, Higgins D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?. Science, 2019, 364(6438): eaav3506.

[86]

Song YF, Zhang XM, Xie K, et al. High-temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects. Adv Mater, 2019, 31(50

[87]

Zhan ZL, Zhao L Electrochemical reduction of CO2 in solid oxide electrolysis cells. J Power Sources, 2010, 195(21): 7250-7254.

[88]

Zhang XM, Song YF, Wang GX, et al. Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: recent advance in cathodes. J Energy Chem, 2017, 26(5): 839-853.

[89]

Xie K, Zhang YQ, Meng GY, et al. Direct synthesis of methane from CO2/H2O in an oxygen-ion conducting solid oxide electrolyser. Energy Environ Sci, 2011, 4(6): 2218.

[90]

Yan JB, Chen H, Dogdibegovic E, et al. High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels. J Power Sources, 2014, 252: 79-84.

[91]

Song YF, Zhou ZW, Zhang XM, et al. Pure CO2 electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell. J Mater Chem A, 2018, 6(28): 13661-13667.

[92]

Zhou YJ, Zhou ZW, Song YF, et al. Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell. Nano Energy, 2018, 50: 43-51.

[93]

Hu SQ, Zhang LX, Liu HY, et al. Detrimental phase evolution triggered by Ni in perovskite-type cathodes for CO2 electroreduction. J Energy Chem, 2019, 36: 87-94.

[94]

Hu SQ, Zhang LX, Liu HY, et al. Alkaline-earth elements (Ca, Sr and Ba) doped LaFeO3-δ cathodes for CO2 electroreduction. J Power Sources, 2019, 443.

[95]

Hu SQ, Zhang LX, Cai LL, et al. Iron stabilized 1/3 A-site deficient La–Ti–O perovskite cathodes for efficient CO2 electroreduction. J Mater Chem A, 2020, 8(40): 21053-21061.

[96]

Liu QX, Song YF, Li RT, et al. A vanadium-doped BSCF perovskite for CO2 electrolysis in solid oxide electrolysis cells. Int J Hydrog Energy, 2021, 46(38): 19814-19821.

[97]

Zhou YJ, Lin L, Song YF, et al. Pd single site-anchored perovskite cathode for CO2 electrolysis in solid oxide electrolysis cells. Nano Energy, 2020, 71.

[98]

Zhang XM, Song YF, Guan F, et al. Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2−δ nanoparticles-modified LSCM-GDC cathode. J Catal, 2018, 359: 8-16.

[99]

Lv HF, Zhou YJ, Zhang XM, et al. Infiltration of Ce0.8Gd0.2O1.9 nanoparticles on Sr2Fe1.5Mo0.5O6-δ cathode for CO2 electroreduction in solid oxide electrolysis cell. J Energy Chem, 2019, 35: 71-78.

[100]

Feng WC, Song YF, Zhang XM, et al. Platinum-decorated ceria enhances CO2 electroreduction in solid oxide electrolysis cells. ChemSusChem, 2020, 13(23): 6290-6295.

[101]

Lv HF, Lin L, Zhang XM, et al. In situ exsolved FeNi3 nanoparticles on nickel doped Sr2Fe1.5Mo0.5O6–δ perovskite for efficient electrochemical CO2 reduction reaction. J Mater Chem A, 2019, 7(19): 11967-11975.

[102]

Lv HF, Lin L, Zhang XM, et al. In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a co-doped Sr2Fe1.5Mo0.5O6-δ cathode for CO2 electrolysis. Adv Mater, 2020, 32(6): e1906193.

[103]

Lv HF, Liu TF, Zhang XM, et al. Atomic-scale insight into exsolution of CoFe alloy nanoparticles in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3−δ with efficient CO2 electrolysis. Angew Chem Int Ed, 2020, 59(37): 15968-15973.

[104]

Lv HF, Lin L, Zhang XM, et al. Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6-δ via repeated redox manipulations for CO2 electrolysis. Nat Commun, 2021, 12: 5665.

[105]

Zhang LX, Li XB, Lu JM, et al. In situ dispersed nano-Au on Zr-suboxides as active cathode for direct CO2 electroreduction in solid oxide electrolysis cells. Nano Lett, 2021, 21(16): 6952-6959.

[106]

Hori Y, Kikuchi K, Suzuki S Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem Lett, 1985, 14(11): 1695-1698.

[107]

Hori Y, Kikuchi K, Murata A, et al. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem Lett, 1986, 15(6): 897-898.

[108]

Jiang XL, Cai F, Gao DF, et al. Electrocatalytic reduction of carbon dioxide over reduced nanoporous zinc oxide. Electrochem Commun, 2016, 68: 67-70.

[109]

Gao DF, Cai F, Wang GX, et al. Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Curr Opin Green Sustain Chem, 2017, 3: 39-44.

[110]

Yan CC, Lin L, Gao DF, et al. Selective CO2 electroreduction over an oxide-derived gallium catalyst. J Mater Chem A, 2018, 6(40): 19743-19749.

[111]

Gao DF, Yan CC, Wang GX, et al. Pd/C catalysts for CO2 electroreduction to CO: Pd loading effect. J Electrochem, 2018, 24(6): 757-765.

[112]

Yu Q, Guo CX, Ge JY, et al. Morphology controlling of silver by plasma engineering for electrocatalytic carbon dioxide reduction. J Power Sources, 2020, 453.

[113]

Lin XZ, Ma WG, Sun KJ, et al. [AuAg26(SR)18S] : open shell structure and high faradaic efficiency in electrochemical reduction of CO2 to CO. J Phys Chem Lett, 2021, 12(1): 552-557.

[114]

Ye K, Liu TF, Song YP, et al. Tailoring the interactions of heterogeneous Ag2S/Ag interface for efficient CO2 electroreduction. Appl Catal B Environ, 2021, 296.

[115]

Gao DF, Li HF, Wei PF, et al. Electrochemical synthesis of catalytic materials for energy catalysis. Chin J Catal, 2022, 43(4): 1001-1016.

[116]

Gao DF, Liu TF, Wang GX, et al. Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett, 2021, 6(2): 713-727.

[117]

Zang YP, Wei PF, Li HF, et al. Catalyst design for electrolytic CO2 reduction toward low-carbon fuels and chemicals. Electrochem Energy Rev, 2022

[118]

Gao DF, Zhou H, Cai F, et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res, 2017, 10(6): 2181-2191.

[119]

Gao DF, Zhou H, Cai F, et al. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal, 2018, 8(2): 1510-1519.

[120]

Yin Z, Gao DF, Yao SY, et al. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy, 2016, 27: 35-43.

[121]

Cai F, Gao DF, Si R, et al. Effect of metal deposition sequence in carbon-supported Pd-Pt catalysts on activity towards CO2 electroreduction to formate. Electrochem Commun, 2017, 76: 1-5.

[122]

Cai F, Gao DF, Zhou H, et al. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction. Chem Sci, 2017, 8(4): 2569-2573.

[123]

Gao DF, Zhang Y, Zhou ZW, et al. Enhancing CO2 electroreduction with the metal-oxide interface. J Am Chem Soc, 2017, 139(16): 5652-5655.

[124]

Yan CC, Li HB, Ye YF, et al. Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ Sci, 2018, 11(5): 1204-1210.

[125]

Yang HB, Hung SF, Liu S, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat Energy, 2018, 3(2): 140-147.

[126]

Lin L, Li HB, Yan CC, et al. Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv Mater, 2019, 31(41

[127]

Zhang Z, Ma C, Tu YC, et al. Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res, 2019, 12(9): 2313-2317.

[128]

Ma SS, Su PP, Huang WJ, et al. Atomic Ni species anchored N-doped carbon hollow spheres as nanoreactors for efficient electrochemical CO2 reduction. ChemCatChem, 2019, 11(24): 6092-6098.

[129]

Liu S, Yang HB, Hung SF, et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew Chem Int Ed, 2020, 59(2): 798-803.

[130]

Ding CM, Feng CC, Mei YH, et al. Carbon nitride embedded with transition metals for selective electrocatalytic CO2 reduction. Appl Catal B Environ, 2020, 268.

[131]

Ren XY, Liu S, Li HC, et al. Electron-withdrawing functional ligand promotes CO2 reduction catalysis in single atom catalyst. Sci China Chem, 2020, 63(12): 1727-1733.

[132]

Yao PF, Li TY, Qiu YL, et al. N-doped hierarchical porous carbon derived from bismuth salts decorated ZIF8 as a highly efficient electrocatalyst for CO2 reduction. J Mater Chem A, 2021, 9(1): 320-326.

[133]

Liu S, Yang HB, Su X, et al. Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: a review. J Energy Chem, 2019, 36: 95-105.

[134]

Yao PF, Qiu YL, Zhang TT, et al. N-doped nanoporous carbon from biomass as a highly efficient electrocatalyst for the CO2 reduction reaction. ACS Sustain Chem Eng, 2019, 7(5): 5249-5255.

[135]

Cheng CF, Shao JQ, Wei PF, et al. Nitrogen and boron co-doped carbon spheres for carbon dioxide electroreduction. ChemNanoMat, 2021, 7(6): 635-640.

[136]

Gao DF, Wang J, Wu HH, et al. pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles. Electrochem Commun, 2015, 55: 1-5.

[137]

Jiang XL, Li HF, Yang YY, et al. pH dependence of CO2 electroreduction selectivity over size-selected Au nanoparticles. J Mater Sci, 2020, 55(28): 13916-13926.

[138]

Lin L, Li HB, Wang Y, et al. Temperature-dependent CO2 electroreduction over Fe-N-C and Ni-N-C single-atom catalysts. Angew Chem Int Ed, 2021, 60(51): 26582-26586.

[139]

Zhong HX, Qiu YL, Zhang TT, et al. Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO2 to formate. J Mater Chem A, 2016, 4(36): 13746-13753.

[140]

Su PP, Xu WB, Qiu YL, et al. Ultrathin bismuth nanosheets as a highly efficient CO2 reduction electrocatalyst. ChemSusChem, 2018, 11(5): 848-853.

[141]

Zhang TT, Qiu YL, Yao PF, et al. Bi-modified Zn catalyst for efficient CO2 electrochemical reduction to formate. ACS Sustain Chem Eng, 2019, 7(18): 15190-15196.

[142]

Shi YM, Ji Y, Long J, et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat Commun, 2020, 11: 3415.

[143]

Li ZJ, Cao A, Zheng Q, et al. Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate. Adv Mater, 2021, 33(2

[144]

Ye K, Zhou ZW, Shao JQ, et al. In situ reconstruction of a hierarchical Sn-Cu/SnO x core/shell catalyst for high-performance CO2 electroreduction. Angew Chem Int Ed, 2020, 59(12): 4814-4821.

[145]

Ye K, Cao A, Shao JQ, et al. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity. Sci Bull, 2020, 65(9): 711-719.

[146]

Shao JQ, Wang Y, Gao DF, et al. Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide. Chin J Catal, 2020, 41(9): 1393-1400.

[147]

Zheng TT, Liu CX, Guo CX, et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat Nanotechnol, 2021, 16(12): 1386-1393.

[148]

Qiu YL, Zhong HX, Zhang TT, et al. Copper electrode fabricated via pulse electrodeposition: toward high methane selectivity and activity for CO2 electroreduction. ACS Catal, 2017, 7(9): 6302-6310.

[149]

Lin L, Liu TF, Xiao JP, et al. Enhancing CO2 electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst. Angew Chem Int Ed, 2020, 59(50): 22408-22413.

[150]

Chen RX, Su HY, Liu DY, et al. Highly selective production of ethylene by the electroreduction of carbon monoxide. Angew Chem Int Ed, 2020, 59(1): 154-160.

[151]

Ma WC, Xie SJ, Liu TT, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat Catal, 2020, 3(6): 478-487.

[152]

Ji YL, Chen Z, Wei RL, et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat Catal, 2022, 5(4): 251-258.

[153]

Gao DF, Arán-Ais RM, Jeon HS, et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal, 2019, 2(3): 198-210.

[154]

Arán-Ais RM, Scholten F, Kunze S, et al. The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat Energy, 2020, 5(4): 317-325.

[155]

Sang JQ, Wei PF, Liu TF, et al. A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products. Angew Chem Int Ed, 2022, 61(5

[156]

Li HF, Wei PF, Gao DF, et al. In situ Raman spectroscopy studies for electrochemical CO2 reduction over Cu catalysts. Curr Opin Green Sustain Chem, 2022, 34.

[157]

Velasco-Vélez JJ, Chuang CH, Gao DF, et al. On the activity/selectivity and phase stability of thermally grown copper oxides during the electrocatalytic reduction of CO2. ACS Catal, 2020, 10(19): 11510-11518.

[158]

Xiao H, Goddard WA 3rd, Cheng T, et al. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc Natl Acad Sci USA, 2017, 114(26): 6685-6688.

[159]

Timoshenko J, Bergmann A, Rettenmaier C, et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat Catal, 2022, 5(4): 259-267.

[160]

Gao DF Revealing structure-selectivity correlations in pulsed CO2 electrolysis via time-resolved operando synchrotron X-ray studies. Nano Res, 2022, 15: 6860-6861.

[161]

Li HF, Liu TF, Wei PF, et al. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew Chem Int Ed, 2021, 60(26): 14329-14333.

[162]

Zhu YT, Cui XY, Liu HL, et al. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res, 2021, 14(12): 4471-4486.

[163]

Huang JF, Mensi M, Oveisi E, et al. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J Am Chem Soc, 2019, 141(6): 2490-2499.

[164]

Wang XL, de Araújo JF, Ju W, et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat Nanotechnol, 2019, 14(11): 1063-1070.

[165]

Xu D, Yang HQ, Hong XL, et al. Tandem catalysis of direct CO2 hydrogenation to higher alcohols. ACS Catal, 2021, 11(15): 8978-8984.

[166]

Liu XL, Wang MH, Yin HR, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. ACS Catal, 2020, 10(15): 8303-8314.

[167]

Ma ZQ, Porosoff MD Development of tandem catalysts for CO2 hydrogenation to olefins. ACS Catal, 2019, 9(3): 2639-2656.

[168]

Gao DF, Cai F, Xu QQ, et al. Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane. J Energy Chem, 2014, 23(6): 694-700.

[169]

Gao DF, Wei PF, Li HF, et al. Designing electrolyzers for electrocatalytic CO2 reduction. Acta Phys-Chim Sin, 2021, 37(5): 2009021.

[170]

Yin ZL, Peng HQ, Wei X, et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ Sci, 2019, 12(8): 2455-2462.

[171]

Wei PF, Li HF, Lin L, et al. CO2 electrolysis at industrial current densities using anion exchange membrane based electrolyzers. Sci China Chem, 2020, 63(12): 1711-1715.

[172]

Wakerley D, Lamaison S, Wicks J, et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat Energy, 2022, 7(2): 130-143.

[173]

Endrődi B, Kecsenovity E, Samu A, et al. Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency. ACS Energy Lett, 2019, 4(7): 1770-1777.

[174]

Rabinowitz JA, Kanan MW The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat Commun, 2020, 11: 5231.

[175]

Ozden A, García de Arquer FP, Huang JE, et al. Carbon-efficient carbon dioxide electrolysers. Nat Sustain, 2022, 5(7): 563-573.

[176]

Larrazábal GO, Strøm-Hansen P, Heli JP, et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl Mater Interfaces, 2019, 11(44): 41281-41288.

[177]

Ma M, Clark EL, Therkildsen KT, et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ Sci, 2020, 13(3): 977-985.

[178]

Siritanaratkul B, Forster M, Greenwell F, et al. Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular electrocatalysts. J Am Chem Soc, 2022, 144(17): 7551-7556.

[179]

Kim JY, Zhu P, Chen FY, et al. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat Catal, 2022, 5(4): 288-299.

[180]

Fujinuma N, Ikoma A, Lofland SE Highly efficient electrochemical CO2 reduction reaction to CO with one-pot synthesized co-pyridine-derived catalyst incorporated in a nafion-based membrane electrode assembly. Adv Energy Mater, 2020, 10(39): 2001645.

[181]

Huang JE, Li FW, Ozden A, et al. CO2 electrolysis to multicarbon products in strong acid. Science, 2021, 372(6546): 1074-1078.

[182]

Monteiro MCO, Dattila F, Hagedoorn B, et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat Catal, 2021, 4(8): 654-662.

[183]

Monteiro MCO, Philips MF, Schouten KJP, et al. Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media. Nat Commun, 2021, 12: 4943.

[184]

Gu J, Liu S, Ni WY, et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat Catal, 2022, 5(4): 268-276.

[185]

Ozden A, Wang YH, Li FW, et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule, 2021, 5(3): 706-719.

[186]

Wang Y, Zhang ZZ, Zhang LN, et al. Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. J Am Chem Soc, 2018, 140(44): 14595-14598.

[187]

Hou TT, Luo NC, Cui YT, et al. Selective reduction of CO2 to CO under visible light by controlling coordination structures of CeO x-S/ZnIn2S4 hybrid catalysts. Appl Catal B Environ, 2019, 245: 262-270.

[188]

Gao W, Bai XW, Gao YY, et al. Anchoring of black phosphorus quantum dots onto WO3 nanowires to boost photocatalytic CO2 conversion into solar fuels. Chem Commun, 2020, 56(56): 7777-7780.

[189]

Wang Y, Shang XT, Shen JN, et al. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat Commun, 2020, 11: 3043.

[190]

Li RG, Cheng WH, Richter MH, et al. Unassisted highly selective gas-phase CO2 reduction with a plasmonic Au/p-GaN photocatalyst using H2O as an electron donor. ACS Energy Lett, 2021, 6(5): 1849-1856.

[191]

Zhang HF, Chen Y, Wang H, et al. Carbon encapsulation of organic-inorganic hybrid perovskite toward efficient and stable photo-electrochemical carbon dioxide reduction. Adv Energy Mater, 2020, 10(44): 2002105.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/