Artificial photosynthetic reduction of CO2 into valuable chemicals is one of the most promising approaches to solve the energy crisis and decreasing atmospheric CO2 emissions. However, the poor selectivity accompanied by the low activity of photocatalysts limits the development of photocatalytic CO2 reduction. Herein, inspired by the use of oxygen vacancy engineering to promote the adsorption and activation of CO2 molecules, we introduced oxygen vacancies in the representative barium titanate (BaTiO3) photocatalyst for photocatalytic CO2 reduction. We found that oxygen vacancies brought significant differences in the CO2 photoreduction activity and selectivity of BaTiO3. The intrinsic BaTiO3 showed a low photocatalytic activity with the dominant product of CO, whereas BaTiO3 with oxygen vacancies exhibited a tenfold improvement in photocatalytic activity, with a high selectivity of ~ 90% to CH4. We propose that the presence of oxygen vacancies promotes CO2 and H2O adsorption onto the BaTiO3 surface and also improves the separation and transfer of photogenerated carriers, thereby boosting the photocatalytic CO2 reduction to CH4. This work highlights the essential role of oxygen vacancies in tuning the selectivity of photocatalytic reduction of CO2 into valuable chemicals.
To alleviate the energy crisis and global warming, photothermal catalysis is an attractive way to efficiently convert CO2 and renewable H2 into value-added fuels and chemicals. However, the catalytic performance is usually restricted by the trade-off between the dispersity and light absorption property of metal catalysts. Here we demonstrate a simple SiO2-protected metal–organic framework pyrolysis strategy to fabricate a new type of integrated photothermal nanoreactor with a comparatively high metal loading, dispersity, and stability. The core-satellite structured Co@SiO2 exhibits strong sunlight-absorptive ability and excellent catalytic activity in CO2 hydrogenation, which is ascribed to the functional separation of different sizes of Co nanoparticles. Large-sized plasmonic Co nanoparticles are mainly responsible for the light absorption and conversion to heat (nanoheaters), whereas small-sized Co nanoparticles with high intrinsic activities are responsible for the catalysis (nanoreactors). This study provides a new concept for designing efficient photothermal catalytic materials.
Catalytic conversion of CO2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis, electrocatalysis, and photo(electro)catalysis, CO2 can be converted into a wide range of valuable products, including CO, formic acid, methanol, methane, ethanol, acetic acid, propanol, light olefins, aromatics, and gasoline, as well as fine chemicals. In this mini-review, we summarize the recent progress in heterogeneous catalysis for CO2 conversion into chemicals and fuels and highlight some representative studies of different conversion routes. The structure–performance correlations of typical catalytic materials used for the CO2 conversion reactions have been revealed by combining advanced in situ/operando spectroscopy and microscopy characterizations and density functional theory calculations. Catalytic selectivity toward a single CO2 reduction product/fraction should be further improved at an industrially relevant CO2 conversion rate with considerable stability in the future.
Excess greenhouse gas emissions, primarily carbon dioxide (CO2), have caused major environmental concerns worldwide. The electroreduction of CO2 into valuable chemicals using renewable energy is an ecofriendly approach to achieve carbon neutrality. In this regard, copper (Cu) has attracted considerable attention as the only known metallic catalyst available for converting CO2 to high-value multicarbon (C2+) products. The production of C2+ involves complicated C–C coupling steps and thus imposes high demands on intermediate regulation. In this review, we discuss multiple strategies for modulating intermediates to facilitate C2+ formation on Cu-based catalysts. Furthermore, several sophisticated in situ characterization techniques are outlined for elucidating the mechanism of C–C coupling. Lastly, the challenges and future directions of CO2 electroreduction to C2+ are envisioned.
Carbon dioxide (CO2) reduction into chemicals or fuels by electrocatalysis can effectively reduce greenhouse gas emissions and alleviate the energy crisis. Currently, CO2 electrocatalytic reduction (CO2RR) has been considered as an ideal way to achieve “carbon neutrality.” In CO2RR, the characteristics and properties of catalysts directly determine the reaction activity and selectivity of the catalytic process. Much attention has been paid to carbon-based catalysts because of their diversity, low cost, high availability, and high throughput. However, electrically neutral carbon atoms have no catalytic activity. Incorporating heteroatoms has become an effective strategy to control the catalytic activity of carbon-based materials. The doped carbon-based catalysts reported at present show excellent catalytic performance and application potential in CO2RR. Based on the type and quantity of heteroatoms doped into carbon-based catalysts, this review summarizes the performances and catalytic mechanisms of carbon-based materials doped with a single atom (including metal and without metal) and multi atoms (including metal and without metal) in CO2RR and reveals prospects for developing CO2 electroreduction in the future.
The interest in CO2 conversion to value-added chemicals and fuels has increased in recent years as part of strategic efforts to mitigate and use the excessive CO2 concentration in the atmosphere. Much attention has been given to developing two-dimensional catalytic materials with high-efficiency CO2 adsorption capability and conversion yield. While several candidates are being investigated, MXenes stand out as one of the most promising catalysts and co-catalysts for CO2 reduction, given their excellent surface functionalities, unique layered structures, high surface areas, rich active sites, and high chemical stability. This review aims to highlight research progress and recent developments in the application of MXene-based catalysts for CO2 conversion to value-added chemicals, paying special attention to photoreduction and electroreduction. Furthermore, the underlying photocatalytic and electrocatalytic CO2 conversion mechanisms are discussed. Finally, we provide an outlook for future research in this field, including photoelectrocatalysis and photothermal CO2 reduction.