Surface modification of polycarbonate urethane by covalent linkage of heparin with a PEG spacer

Yakai Feng , Hong Tian , Mingqi Tan , Pengfei Zhang , Qingliang Chen , Jianshi Liu

Transactions of Tianjin University ›› 2013, Vol. 19 ›› Issue (1) : 58 -65.

PDF
Transactions of Tianjin University ›› 2013, Vol. 19 ›› Issue (1) : 58 -65. DOI: 10.1007/s12209-013-1894-y
Article

Surface modification of polycarbonate urethane by covalent linkage of heparin with a PEG spacer

Author information +
History +
PDF

Abstract

Heparin was grafted onto polycarbonate urethane (PCU) surface via a three-step procedure utilizing, αω-diamino-poly(ethylene glycol) (APEG, M n=2 000) as a spacer. In the first step, isocyanate functional groups were introduced onto PCU surface by the treatment of hexamethylene diisocyanate (HDI) in the presence of di-n-butyltin dilaurate (DBTDL) as a catalyst. In the second step, APEG was linked to the PCU surface to obtain the APEG conjugated PCU surface (PCU-APEG). In the third step, heparin was covalently coupled with PCU-APEG in the presence of N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylamidopropyl) carbodiimide (EDAC). The amount of heparin (1.639 μg/cm2) covalently immobilized on the PCU-APEG surface was determined by the toluidine blue method. The modified surface was characterized by water contact angle, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The hemocompatibility was preliminarily studied by platelet adhesion test. The results indicated that heparin was successfully grafted onto the PCU surface, and meanwhile the hydrophilicity and hemocompatibility of the modified PCU surface were improved significantly compared with the blank PCU surface.

Keywords

polycarbonate urethane / surface modification / heparin / hemocompatibility / poly(ethylene glycol)

Cite this article

Download citation ▾
Yakai Feng, Hong Tian, Mingqi Tan, Pengfei Zhang, Qingliang Chen, Jianshi Liu. Surface modification of polycarbonate urethane by covalent linkage of heparin with a PEG spacer. Transactions of Tianjin University, 2013, 19(1): 58-65 DOI:10.1007/s12209-013-1894-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ghanbari H., Viatge H., Kidane A. G., et al. Polymeric heart valves: New materials, emerging hopes[J]. Trends in Biotechnology, 2009, 27(6): 359-367.

[2]

Zhang S. F., Feng Y. K., Zhang L., et al. Biodegradable polyesterurethane networks for controlled release of aspirin[J]. Journal of Applied Polymer Science, 2010, 116(2): 861-867.

[3]

Feng Y. K., Xue Y., Guo J. T., et al. Synthesis and characterization of poly(carbonate urethane) networks with shapememory properties[J]. Journal of Applied Polymer Science, 2009, 112(1): 473-478.

[4]

Feng Y. K., Zhang S. F., Zhang L., et al. Release of aspirin from biodegradable polyesterurethane networks[J]. Advanced Materials Research, 2009, 79–82, 1431-1434.

[5]

Arrigo D., Giordano P., Macchi C., et al. Synthesis, platelet adhesion and cytotoxicity studies of new glycerophosphoryl-containing polyurethanes[J]. International Journal of Artificial Organs, 2007, 30(2): 133-143.

[6]

Chen K. Y., Kuo J. F., Chen C. Y.. Synthesis, characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethanes[J]. Biomaterials, 2000, 21(2): 161-171.

[7]

Zhao H. Y., Feng Y. K., Guo J. T.. Grafting of poly(ethylene glycol) monoacrylate onto polycarbonateurethane surfaces by ultraviolet radiation grafting polymerization to control hydrophilicity[J]. Journal of Applied Polymer Science, 2011, 119(6): 3717-3727.

[8]

Aksoy A. E., Hasirci V., Hasirci N., et al. Surface modification of polyurethanes with covalent immobilization of heparin[J]. Macromolecular Symposia, 2008, 269(1): 145-153.

[9]

Byun Y., Jacobs H. A., Kim S. W.. Mechanism of thrombin inactivation by immobilized heparin[J]. Journal of Biomedical Materials Research, 1996, 30(4): 423-427.

[10]

Huang X. J., Guduru D., Xu Z. K., et al. Immobilization of heparin on polysulfone surface for selective adsorption of low-density lipoprotein (LDL)[J]. Acta Biomaterialia, 2010, 6(3): 1099-1106.

[11]

Liu C. X., Zhang D. R., He Y., et al. Modification of membrane surface for anti-biofouling performance: Effect of anti-adhesion and anti-bacteria approaches[J]. Journal of Membrane Science, 2010, 346(1): 121-130.

[12]

Zhang L. H., Wu D., Chen Y. S., et al. Surface modification of polymethyl methacrylate intraocular lenses by plasma for improvement of antithrombogenicity and transmittance[J]. Applied Surface Science, 2009, 255(15): 6840-6845.

[13]

Lu Q., Zhang S. J., Hu K., et al. Cytocompatibility and blood compatibility of multifunctional fibroin/collagen/heparin scaffolds[J]. Biomaterials, 2007, 28(14): 2306-2313.

[14]

Chen H., Chen Y., Sheardown H., et al. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer[J]. Biomaterials, 2005, 26(35): 7418-7424.

[15]

Kingshott P., Thissen H., Griesser H. J.. Effects of cloudpoint grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins[J]. Biomaterials, 2002, 23(9): 2043-2056.

[16]

Chen H., Hu X. Y., Zhang Y. X., et al. Effect of chain density and conformation on protein adsorption at PEG-grafted polyurethane surfaces[J]. Colloids and Surfaces B: Biointerfaces, 2008, 61(2): 237-243.

[17]

Ko Y. G., Kim Y. H., Park K. D., et al. Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation[J]. Biomaterials, 2001, 22(15): 2115-2123.

[18]

Jo S., Park K.. Surface modification using silanated poly(ethylene glycol)s[J]. Biomaterials, 2000, 21(6): 605-616.

[19]

Lee J. H., Lee H. B., Andrade J. D.. Blood compatibility of polyethylene oxide surfaces[J]. Progress in Polymer Science, 1995, 20(6): 1043-1079.

[20]

Oh S. J., Jung J. C., Zin W. C.. Synthesis and surface property variations of polypropylene-graft-poly(ethylene glycol)[J]. Journal of Colloid and Interface Science, 2001, 238(1): 43-47.

[21]

Altankov G., Thom V., Groth T., et al. Modulating the biocompatibility of polymer surfaces with poly (ethylene glycol): Effect of fibronectin[J]. Journal of Biomedical Materials Research, 2000, 52(1): 219-230.

[22]

Klee D., Hocker H.. Polymers for biomedical applications: Improvement of the interface compatibility[J]. Biomedical Applications: Polymer Blends, 1999, 149, 1-57.

[23]

Tziampazis E., Kohn J., Moghe P. V.. PEG-variant biomaterials as selectively adhesive protein templates: Model surfaces for controlled cell adhesion and migration[J]. Biomaterials, 2000, 21(5): 511-520.

[24]

Kang I. K., Seo E. J., Huh M. W., et al. Interaction of blood components with heparin-immobilized polyurethanes prepared by plasma glow discharge[J]. Journal of Biomaterials Science Polymer Edition, 2001, 12(10): 1091-1108.

[25]

Mongondry P., Bonnans-Plaisance C., Jean M., et al. Mild synthesis of amino-poly(ethylene glycol)s: Application to steric stabilization of clays[J]. Macromolecular Rapid Communications, 2003, 24(11): 681-685.

[26]

Wissinka M. J., Beerninka R., Pieperb J. S., et al. Immobilization of heparin to EDC/NHS-crosslinked collagen, characterization and in vitro evaluation[J]. Biomaterials, 2001, 22(2): 151-163.

[27]

Smith P. K., Mallia A. K., Hermanson G. T.. Colorimetric method for the assay of heparin content in immobilized heparin preparations[J]. Analytical Biochemistry, 1980, 109(2): 466-473.

[28]

Kim Y. J., Kang I. K., Huh M. W., et al. Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge[J]. Biomaterials, 2000, 21(2): 121-130.

[29]

Kang I. K., Kwon O. H., Lee Y. M., et al. Preparation and surface characterization of functional group-grafted and hepimmobilized polyurethanes by plasma glow discharge[J]. Biomaterials, 1996, 17(8): 841-847.

[30]

Meng J., Kong H., Xu H. Y., et al. Improving the blood compatibility of polyurethane using carbon nanotubes as fillers and its implications to cardiovascular surgery[J]. Journal of Biomedical Materials Research Part A, 2005, 74(2): 208-214.

[31]

Mai S. M., Abbot A., Norton D., et al. Synthesis and characterization of block copolymers of polyoxyethylene and polylactide with different architectures[J]. Macromolecular Chemistry and Physics, 2009, 210(10): 840-851.

[32]

Tseng Y. C., Park K.. Synthesis of photoreactive poly(ethyleneglyco1) and its application to the prevention of surface-induced platelet activation[J]. Journal of Biomedical Material Research Part A, 1992, 26(3): 373-391.

[33]

Petitou M., Casu B., Lindahl U.. 1976–1983, a critical period in the history of heparin: The discovery of the antithrombin binding site[J]. Biochimie, 2003, 85(1/2): 83-89.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/