Wavy film flow along periodic wall under monochromatic-frequency flowrate perturbation

Songlin Xu , Yongchuan Gao

Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (4) : 305 -312.

PDF
Transactions of Tianjin University ›› 2011, Vol. 17 ›› Issue (4) : 305 -312. DOI: 10.1007/s12209-011-1630-4
Article

Wavy film flow along periodic wall under monochromatic-frequency flowrate perturbation

Author information +
History +
PDF

Abstract

Surface wave dynamics of falling film on the surface of periodic rectangular wall under monochromatic-frequency flowrate forcing disturbances is studied via numerical simulation. Waveforms formed on the periodic rectangular wall are different from those on the flat plate. At low frequency, the perturbation introduced at the inlet first undergoes a steady flow region and then develops into solitary waves. When the frequency becomes higher, solitary waves disappear. Film deformations in the steady flow region and characteristics of solitary waves are studied as the film travels down. There are circulations at the depression of periodic wall which are dependent on the local film characteristics and geometry of the corrugation. Moreover, the flow rate and geometry of the corrugations can also affect the evolvement of the monochromatic perturbation.

Keywords

periodic rectangular wall / circulation flow / solitary wave / disturbance frequency / film flow

Cite this article

Download citation ▾
Songlin Xu, Yongchuan Gao. Wavy film flow along periodic wall under monochromatic-frequency flowrate perturbation. Transactions of Tianjin University, 2011, 17(4): 305-312 DOI:10.1007/s12209-011-1630-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kapitza P. L., Kapitza S. P. Wave flow in thin layers of a viscous fluid[G]. Collected Papers of P L Kapitza. Vol. II, 1964, New York: The Macmillan Company.

[2]

Liu J., Gollub J. P. Solitary wave dynamics of film flows[J]. Physics of Fluids, 1994, 6(5): 1702-1712.

[3]

Nosoko T., Yoshimura P. N., Nagata T., et al. Characteristics of two-dimensional waves on a falling film[J]. Chemical Engineering Science, 1996, 51(5): 725-732.

[4]

Akio M. Numerical simulation of wavy liquid film flowing down a vertical wall and an inclined wall[J]. International Journal of Thermal Science, 2000, 39(9/10/11): 1015-1027.

[5]

Gao D., Morley N. B., Dhir V. Numerical simulation of wavy falling film flow using VOF method[J]. Journal of Computational Physics, 2003, 192(2): 624-642.

[6]

Webb R. L. Principles of Enhanced Heat Transfer[M]. 1994, New York: John Wiley & Sons, Inc.

[7]

Valluri P., Matar O. K., Hewitt Geoffrey F., et al. Thin film flow over structured packings at moderate Reynolds numbers[J]. Chemical Engineering Science, 2005, 60(7): 1965-1975.

[8]

Wireschem A., Aksel N. Instability of a liquid film flowing down an inclined wavy plane[J]. Physica D: Nonlinear Phenomena, 2003, 186(3/4): 221-232.

[9]

Luo S., Li H., Fei W., et al. Liquid film characteristics on surface of structured packing[J]. Chinese Journal of Chemical Engineering, 2009, 17(1): 47-52.

[10]

Gu F., Liu C. J., Yuan X. G. CFD simulation of liquid film flow on inclined plates[J]. Chemical Engineering Technology, 2004, 27(10): 1099-1104.

[11]

Gaskel P. H., Jimack P. K., Sellier M., et al. Gravity-driven flow of continuous thin liquid films on non-porous substrates with topography[J]. Journal of Fluid Mechanics, 2004, 509, 253-280.

[12]

Scholle M., Wierschem A., Aksel N. Creeping films with vortices over strongly undulated bottom[J]. Acta Mechanica, 2004, 168(3/4): 167-193.

[13]

Vlachogiannis M., Bontonzoglou V. Experiments on laminar film flow along a periodic wall[J]. Journal of Fluid Mechanics, 2002, 457, 135-156.

[14]

Argyriadi K., Vlachogiannis M., Bontozoglou V. Experimental study of inclined film flow along periodic corrugations: The effect of wall steepness[J]. Physics of Fluids, 2006, 18(1): 1-15.

[15]

Xu Z. F., Khoo B. C., Wijeysundera N. E. Mass transfer across the falling film: Simulations and experiments[J]. Chemical Engineering Science, 2008, 63(9): 2559-2575.

[16]

Lan H., Friedrich M., Armaly B. F., et al. Simulation and measurement of 3D shear-driven thin liquid film flow in a duct[J]. International Journal of Heat and Fluid Flow, 2008, 29(2): 449-459.

[17]

Hoffmann A., Ausner I., Repke J. U., et al. Detailed investigation of multiphase (gas-liquid and gas-liquid-liquid) flow behavior on inclined plates[J]. Chemical Engineering Research and Design, 2006, 84(2): 147-154.

[18]

Brackbill J. U., Kothe D. B., Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.

[19]

Akio M. Numerical analysis for a falling liquid film with interfacial wave on an inclined plate. Part 2: Effects of interfacial waves on flow dynamics and heat transfer[J]. Heat Transfer-Asian Research, 2000, 29(3): 233-248.

[20]

Liu J., Paul J. D., Gollub J. P. Measurements of the primary instabilities of film flow[J]. Journal of Fluid Mechanics, 1993, 250, 69-101.

[21]

Vlachogiannis M., Bontozoglou V. Observation of solitary wave dynamics of film flows[J]. Journal of Fluid Mechanics, 2001, 435, 191-215.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/