2025-04-22 2011, Volume 17 Issue 4

  • Select all
  • Ming Chen , Li Jiang , Guoqiang Guo , Qinglong An

    Compacted graphite cast iron (CGI) has been the material for high-power diesel engines recently, but its increased strength causes poor machinability. In this study, coated and uncoated carbide tools were used in dry milling experiment and FEM simulation to study the machinability of CGI and wear behaviour of tools. The experimental and FEM simulation results show that coated tool has great advantage in dry milling of CGI. SEM and EDS analysis of tool wear indicate the wear morphology and wear mechanism. Adhesive wear is the main mechanism to cause uncoated tool wear, while abrasive wear and delamination wear are the main mechanism to cause coated tool wear. Stress and temperature distribution in FEM simulation help to understand the wear mechanism including the reason for coating peeled off.

  • Huawei Chen , Minglong Cheng , Youjie Li , Deyuan Zhang

    A novel precision vibration-assisted micro-engraving system was developed by the integration of fast tool servo and ultrasonic elliptical vibration system, in which the flexure hinge was designed to avoid backlash and PID control algorithm was established to guarantee specific precision. Apart from experimental validation of the performance of the system, various micro-V-grooves cutting experiments on aluminum alloy, ferrous material and hard cutting material were performed, in which Kistler force sensor was used to measure cutting force. Through experiments, it was clear that the vibration-assisted micro-engraving system can ensure good quality of micro-V-grooves and reduce cutting force by about 60% compared with traditional removal process without ultrasonic vibration.

  • Feng Jiang , Hong Xie , Yiming Rong , Lan Yan

    Scratch test and friction test were performed to evaluate the internal and external interface behaviors of TiAlSiN coating, respectively. The critical compressive and shearing stress of coating failure during scratch test were calculated and the values are 30.84 MPa and 4.98 MPa respectively. The average friction coefficients of TiAlSiN coating against 2Cr12Ni4Mo3VNbN steel are 0.70 (sliding speed 50 m/min), 0.63 (sliding speed 100 m/min), and 0.81 (sliding speed 150 m/min). The elements diffusion was analyzed by EDS. Al and Si element of coating material diffuse to the steel disc, except Ti element. The oxidation decreases with the increase of sliding speed, but the adhesion increases with the increase of sliding speed. More Al element diffuses to the steel disc at the high sliding speed, but the diffusion of Si element keeps almost constant at different sliding speeds.

  • Bin Lin , Lei Zhang , Dante Dorantes , Yanning Li , Xing Fu , Xiaotang Hu

    The surface acoustic wave (SAW) propagating in a sample of steel is simulated by using finite element method (FEM). The waves are excited by a load function with propagation properties such as phase velocity dispersion and wide bandwidth. A two-dimensional model consisting of surface defects loaded with a wideband 50–200 MHz and short time 0.1 μs displacement function is investigated in the time and frequency domains. By transient dynamic analysis, Fourier transform and dispersion calculation, snapshots of propagating wave and responses from sensing points are presented. It is indicated that this supervision approach is sensitive to the surface cracks and reflections.

  • Zichao Lin , Fanghong Sun , Bin Shen

    The failure behavior of diamond-coated die was investigated experimentally and analytically through finite element method (FEM) simulation in the present work. Diamond coatings were fabricated by straight hot filament chemical vapor deposition (CVD) passing through the interior hole of the drawing die using a mixture of hydrogen and acetone as source gases. The performance tests were made under real drawing condition. Scanning electron microscopy (SEM) was used for the study of coating wear after die service. The coating wear appears on two regions of the reduction zone: one is near the entrance where the contact begins, and the other is at the end of the reduction zone. FEM simulation was made for calculating the von Mises stresses distribution on the coating and substrate during the drawing process. The present work was of great practical significance for the improvement of drawing performance of diamond-coated drawing dies.

  • Taiyong Wang , Yuan Xing , Lin Zhao , Qing Li

    A unity transformation model (UTM) was presented for flexible NC machining of spiral bevel gears and hypoid gears. The model can support various machining methods for Gleason spiral bevel gears and hypoid gears, including generation machining and formation machining for wheel or pinion on a universal five-axis machining center, and then directly produce NC codes for the selected machining method. Wheel machining and pinion machining under UTM were simulated in Vericut 6.0 and tested on a five-axis machining center TDNC-W2000 with NC unit TDNC-H8. The results from simulation and real-cut verify the feasibility of gear machining under UTM as well as the correctness of NC codes.

  • Zhongxia Xiang , Guan Tian , Wen Xu , Xin Guan , Xiaoran Yu

    Experiment and dynamic simulation were combined to obtain the loads on bicycle frame. A dynamic model of body-bicycle system was built in ADAMS. Then the body gestures under different riding conditions were captured by a motion analysis system. Dynamic simulation was carried out after the data of body motions were input into the simulation system in ADAMS and a series of loads that the body applied on head tube, seat pillar and bottom bracket were obtained. The results show that the loads on frame and their distribution are apparently different under various riding conditions. Finally, finite element analysis was done in ANSYS, which showed that the stress and its distribution on frame were apparently different when the frame was loaded according to the bicycle testing standard and simulation respectively. An efficient way to obtain load on bicycle frame accurately was proposed, which is significant for the safety of cycling and will also be the basis for the bicycle design of digitalization, lightening and customization.

  • Ting Zang , Anping Xu

    The representation method of heterogeneous material information is one of the key technologies of heterogeneous object modeling, but almost all the existing methods cannot represent non-uniform rational B-spline (NURBS) entity. According to the characteristics of NURBS, a novel data structure, named NURBS material data structure, is proposed, in which the geometrical coordinates, weights and material coordinates of NURBS heterogeneous objects can be represented simultaneously. Based on this data structure, both direct representation method and inverse construction method of heterogeneous NURBS objects are introduced. In the direct representation method, three forms of NURBS heterogeneous objects are introduced by giving the geometry and material information of control points, among which the homogeneous coordinates form is employed for its brevity and easy programming. In the inverse construction method, continuous heterogeneous curves and surfaces can be obtained by interpolating discrete points and curves with specified material information. Some examples are given to show the effectiveness of the proposed methods.

  • Peng Jia , Ming Zhou

    To improve the machinability of optical glass and achieve optical parts with satisfied surface quality and dimensional accuracy, scratching experiments with increasing cutting depth were conducted on glass SF6 to evaluate the influence of cutting fluid properties on the machinability of glass. The sodium carbonate solution of 10.5% concentration was chosen as cutting fluid. Then the critical depths in scratching experiments with and without cutting fluid were examined. Based on this, turning experiments were carried out, and the surface quality of SF6 was assessed. Compared with the process of dry cutting, the main indexes of surface roughness decrease by over 70% totally. Experimental results indicated that the machinability of glass SF6 can be improved by using the sodium carbonate solution as cutting fluid.

  • Meng Zhao , Ning He , Liang Li , Xunbin Huang

    Based on microscope and image processing, a new method of auto tool setting for micro milling was presented. Firstly, a realtime image of tool setting area was obtained by microscope and CCD camera, then image processing was carried out on this image and the gap between the tool and workpiece was calculated. The gap measurement was sent to motion controlling card to make the tool approach to the surface of workpiece. These steps were repeated until the gap is zero, which means that tool setting was finished. Moreover, a reliability verification test was conducted. Results indicated that the precision of tool setting is satisfactory.

  • Ning Ren , Mei Zhan , He Yang , Yatao Qin , Zhiyong Zhang , Haomin Jiang , Keshan Diao , Xinping Chen

    The mechanical characteristics of the weld joint were investigated by tensile test, microstructure test, and microhardness test. The welded tube NC bending tests were carried out to evaluate the weld on the formability of the QSTE340 welded tube. The results show that the wall thinning degree, cross-sectional deformation and springback angle increase significantly as the weld line is located on the outside of the bend compared with that located on the middle and inside, and the welded tubes produce nearly identical performance as the weld line is located on the middle and inside. The wall thickening degree decreases much as the weld line is located on the inside of the bend. So the welded tube can acquire good bending formability as the weld line is located in the region away from the outside of the bend.

  • Denghai Xing , Wuyi Chen

    Structural bionic design lacks mature and scientific theories, and the excellent structural characteristics of natural organisms sometimes cannot be transferred into engineering structures effectively. Aiming at overcoming the existing problems, this paper summarizes three related theories: similarity theory, fuzzy evaluation theory and optimization theory. Based on the related theories, a method of structural bionic design is introduced, which includes four steps: selecting the most useful structural characteristic of natural organism; analyzing the structural characteristic finally chosen for engineering problem; completing the structural bionic design for engineering structure; and verifying the structural bionic design. Similarity theory and fuzzy evaluation theory are employed to achieve Step 1. In Step 2 and Step 3, optimization theory is employed to analyze the parameters of structures. Together with the thoughts of simplification and grouping, optimization theory can reveal the relationship between organism structure and engineering structure, providing a way to structural bionic design. A general evaluation criterion is proposed in Step 4, which is feasible to evaluate the performance of different structures. Finally, based on the method, a structural bionic design of thin-walled cylindrical shell is introduced.

  • Jiansheng Ding , Weiqi Hua , Bingbo Hu , Jinhong Song , Yinchuan Lou

    Increasing demand is fueling the booming polyurethane industry worldwide. An impeding issue for polyurethane industry is how to handle the large quantity of hydrogen chloride byproduct generated from the synthesis of intermediates, i.e., isocyanates. In the meantime, the traditional chloro-alkaline process suffers both from the high energy intensity of electrolysis method and the disparity in the chlorine and caustic soda market. To solve these problems, the state-of-the-art chlorine recycling technologies are reviewed and compared. Approaches for cost-effective utilization of chlorine in polyurethane industry are investigated. Chinese academies and enterprises’ on-going effort on the development of a novel hydrogen chloride oxidation process for the synthesis of chlorine is presented. With this process, the closed loop recycling of chlorine can be realized. Tremendous economic, environmental and social benefits can be expected. A wide adoption of this technology will significantly advance the sustainable development of polyurethane industry.

  • Songlin Xu , Yongchuan Gao

    Surface wave dynamics of falling film on the surface of periodic rectangular wall under monochromatic-frequency flowrate forcing disturbances is studied via numerical simulation. Waveforms formed on the periodic rectangular wall are different from those on the flat plate. At low frequency, the perturbation introduced at the inlet first undergoes a steady flow region and then develops into solitary waves. When the frequency becomes higher, solitary waves disappear. Film deformations in the steady flow region and characteristics of solitary waves are studied as the film travels down. There are circulations at the depression of periodic wall which are dependent on the local film characteristics and geometry of the corrugation. Moreover, the flow rate and geometry of the corrugations can also affect the evolvement of the monochromatic perturbation.