Biodegradable electronics have revolutionized the field of medical devices by offering inherent advantages such as natural disintegration after a useful functional period, thereby eliminating the need for removal surgery. This paradigm shift addresses challenges with long-term implantation, the risks of secondary surgeries, and potential complications, offering a safer and more patient-friendly approach to temporary implantable devices. This review delves into the dissolution kinetics of materials and strategies for lifetime control providing a comprehensive overview of recent advancements in biodegradable electronics. Understanding the kinetics is crucial for meeting the required functional lifetime for implantable medical applications, which varies based on application scope and target diseases. The dissolution kinetics of silicon and biodegradable metals form the core of the discussion, focusing on recent studies aimed at controlling the dissolution rate and enhancing properties. The exploration extends to ideas for accelerating material degradation or initiating on-demand degradation in biodegradable electronics after stable function. Additionally, the compilation of encapsulation layer materials and strategies enhances understanding of how to improve the stable operation time of devices. Emphasis is placed on efforts to adjust the lifetime of biodegradable electronics, particularly in medical applications.
Electrophysiology is an indispensable tool in the early diagnosis of a wide range of diseases, making the precise, continuous, and stable recording of electrophysiological signals critically important. Organic electrochemical transistors stand out among various electrophysiological recording devices, offering a high signal-to-noise ratio due to their intrinsic amplification capability. However, despite their inherent advantages, several challenges persist in practical scenarios, such as the stability of wearable devices, limited spatiotemporal resolution, and undesired inter-channel crosstalk in implantable systems. Addressing these challenges may require innovative approaches in electrolyte engineering. This perspective summarizes the latest advancements and ongoing hurdles in the electrolyte engineering of organic electrochemical transistors, highlighting their potential to revolutionize advanced electrophysiological applications.
Liquid metal (LM), an emerging functional material, plays increasing roles in biomedical and healthcare areas. It has particular values in neural interfaces as it combines high conductivity, flowability, and biocompatibility properties. Neuro-electrical interfaces (NEIs) are effective tools to provide a bridge between the nervous system and the outside world. The main target of developing neural interfaces is to help disabled people repair damaged nerves and enhance human capacity above normal ability. This article systematically summarizes LM-based neural interface technologies, including neural electrodes for electrical signal acquisition and administration of electrical stimulation and nerve guidance conduits for neural connectivity and functional reconstruction. The discussion begins with an overview of the fundamental properties associated with LM materials involved in the field of neural interface applications. The fabrication methods of LM-based neuro-electrodes and conduits are then introduced, and the current development status of LM-based neuro-electrodes and conduits is elaborated. Finally, the prospects and possible challenges of LM-based neural interfaces are outlined.
The lack of infrastructure and accessibility in medical treatments has been considered as a global chronic issue since the concept of treatment and prevention was presented. After the COVID-19 pandemic, the medical reaction capability for epidemic outbreak/spread has been spotlighted as a critical issue to the fore worldwide. To reduce the burden on the medical system from the simultaneous disease emergence, the personalized wearable electronic systems have arisen as the next-generation biomedical monitoring/treating equipment for infectious diseases at the initial stage. In particular, electronic skin (e-skin) with its potential for multifunctional extendibility has been enabled to be applied to next-generation long-term healthcare devices with real-time biosignal sensing. Here, we introduce the recent enhancements of various e-skin systems for healthcare applications in terms of material types and device structures, including sensor components, biological signal sensing mechanisms, applicable technological advancements, and medical utilization.
Despite the lower efficiency for thermoelectric cooling technology compared to conventional mechanical cooling technology, it finds application in commercial portable cooling due to its compactness, simple device design, and low noise. The rapid progress in flexible and wearable electronics opens the need for flexible cooling technology for local thermal regulation where thermoelectric cooling technology offers niche advantages suitable for flexible cooling such as light weight and no moving parts. Organic thermoelectrics hold promise for flexible and wearable cooling applications due to their intrinsic mechanical flexibility, low thermal conductivity, and ease of processing. However, research on organic Peltier cooling devices remains limited, and more work is required to exploit their potential for flexible cooling applications. This review discussed the state-of-the-art organic Peltier cooling devices and the materials and device design considerations required for advancing organic Peltier device technology toward practical applications.
Skin is a rich source of invaluable information for healthcare management and disease diagnostics. The integration of soft skin electronics enables precise and timely capture of these cues at the skin interface. Leveraging attributes such as lightweight design, compact size, high integration, biocompatibility, and enhanced comfort, these technologies hold significant promise for advancing various applications. However, the fabrication process for most existing soft skin electronics typically requires expensive platforms and clean-room environments, potentially inflating production costs. In recent years, the emergence of laser-induced-graphene (LIG) has presented a practical solution for developing soft skin electronics that are both cost-effective and high-performing. This advancement paves the way for the widespread adoption of intelligent healthcare technologies. Here, we comprehensively review recent studies focusing on LIG-based soft skin electronics (LIGS2E) for intelligent healthcare applications. We first outline the preparation methodologies, fundamental properties of LIG, and standard regulation strategies employed in developing soft skin electronics. Subsequently, we present an overview of various LIGS2E designs and their diverse applications in intelligent healthcare. These applications encompass biophysical and biochemical sensors, bio-actuators, and power supply systems. Finally, we deliberate on the potential challenges associated with the practical implementation of LIGS2E in healthcare settings and offer insights into future directions for research and development. By elucidating the capabilities and limitations of LIGS2E, this review aims to contribute to advancing intelligent healthcare technologies.
Environment-benign indium phosphide (InP) quantum dots (QDs) show great promise as visible emitters for next-generation display applications, where bright and narrow emissivity of QDs should be required toward high-efficiency, high-color reproducibility. The photoluminescence (PL) performance of InP QDs has been consistently, markedly improved, particularly owing to the exquisite synthetic control over core size homogeneity and core/shell heterostructural variation. To date, synthesis of most high-quality InP QDs has been implemented by using zinc (Zn) carboxylate as a shell precursor that unavoidably entails the formation of surface oxide on InP core. Herein, we demonstrate synthesis of superbly bright, color-pure green InP/ZnSe/ZnS QDs by exploring an innovative hybrid Zn shelling approach, where Zn halide (ZnX2, X = Cl, Br, I) and Zn oleate are co-used as shell precursors. In the hybrid Zn shelling process, the type of ZnX2 is found to affect the growth outcomes of ZnSe inner shell and consequent optical properties of the resulting heterostructured InP QDs. Enabled by not only the near-complete removal of the oxide layer on InP core surface through the hybrid Zn shelling process but the controlled growth rate of ZnSe inner shell, green InP/ZnSe/ZnS QDs achieve a record quantum yield (QY) up to unity along with a highly sharp linewidth of 32 nm upon growth of an optimal ZnSe shell thickness. This work affords an effective means to synthesize high-quality heterostructured InP QDs with superb emissive properties.
As device form factors evolve towards increased complexity and flexibility, the role of adhesives within the display module stack becomes increasingly crucial. These adhesives are essential for bonding functional layers with minimal thickness while mitigating stress during the dynamic behavior of flexible devices. This paper offers a comprehensive overview of the essential properties of adhesives - such as adhesion, viscoelasticity, optical characteristics, and environmental reliability - necessary for the stable operation of flexible display devices across diverse form factors and environments. In particular, it provides an in-depth look at ongoing research in simulation, material selection, polymer network control, and the integration of new functionalities to achieve optimal performance. Furthermore, this paper discusses extensive research outcomes addressing the growing demand for sustainable solutions. Building on this knowledge, we highlight the future direction of adhesives for flexible displays.
Flexible and stretchable electrochromic displays (ECDs) perform a crucial function in Internet of Things (IoT) systems, as they have shown superior eye-friendly, energy-saving, mechanical (flexibility and stretchability) properties. They can be integrated with IoT devices and successfully applied as wearable and intelligent electronics. Flexible and stretchable ECD technology has shown promising potential but is still in the early stage of development. A systematic overview from comprehensive perspectives of materials selection and modification, structure design, and advanced fabrication methods of this technology is necessary. In this review, we concentrate on the strategies in substrates, active layers, and electrolyte aspects to fabricate high-performance flexible and stretchable ECDs. We have systematically summarized the materials selection/modification and device structure design in these strategies. We also outline recent advances in flexible and stretchable ECDs based on processing methods for electrode patterns, active layer patterns, electrolyte patterns, and ECD pixels. Moreover, the interactive visual displays integrating ECD pixels with different sensors have been elaborated. Finally, we outline the future directions for developing flexible and stretchable ECDs, focusing on materials, methods, and applications. These prospects aim to overcome the limitations in pattern resolution, electrolyte uniformity, and pixel size/number and realize the manufacturable, commercialized, scalable, and robust flexible ECDs. This review can further promote the basic research and advanced fabrication of flexible ECDs and facilitate the advancement of multifunctional displays to satisfy the increasing demand for next-generation flexible electronics.
This review investigates the transformative potential of neuromorphic computing in advancing biointegrated electronics, with a particular emphasis on applications in medical sensing, diagnostics, and therapeutic interventions. By examining the convergence of edge computing and neuromorphic principles, we explore how emulating the operational principles of the human brain can enhance the energy efficiency and functionality of biointegrated electronics. The review begins with an introduction to recent breakthroughs in materials and circuit designs that aim to mimic various aspects of the biological nervous system. Subsequent sections synthesize demonstrations of neuromorphic systems designed to augment the functionality of healthcare-related electronic systems, including those capable of direct signal communication with biological tissues. The neuromorphic biointegrated devices remain in a nascent stage, with a relatively limited number of publications available. The current review aims to meticulously summarize these pioneering studies to evaluate the current state and propose future directions to advance the interdisciplinary field.
Recent advances in pressure sensors have garnered significant interest due to their promising applications in healthcare, robotics and wearable technology. In these fields, there is an ever-increasing demand for soft sensors that can conform to complex surfaces, such as the human body. However, current sensors often face limitations in measurable pressure ranges and customization involves complex manufacturing processes. In this study, we introduce an innovative solution for producing soft pressure sensors with varying maximum detection pressures. By utilizing a magnetic transduction mechanism and different hyperelastic materials, we have developed sensors that can adapt to irregular surfaces. These sensors measure a wide range of pressures, from ultra-low to medium, and offer variable stiffness, sensitivity, and measurement ranges. The sensors we manufactured exhibit a detection range from 6.8 to 77.4 kPa, a sensitivity range between -5.1 × 10-2 and -0.4 × 10-2 kPa-1, a short recovery time of
Battery thermal management systems (BTMS) play a crucial role in various fields such as electric vehicles and mobile devices, as their performance directly affects the safety, stability, and lifespan of the equipment. Thermoelectric coolers (TECs), utilizing the thermoelectric effect for temperature regulation and cooling, offer unique advantages for BTMS. Compared to traditional cooling techniques, TEC-based BTMS provides precise temperature control, which allows customized adjustment of temperatures in different areas, meeting the strict thermal management demands in various fields. This offers more reliable and efficient thermal management solutions for applications in electric vehicles and mobile devices. Furthermore, flexible TECs can provide more efficient thermal management for flexible batteries. This article timely and extensively explores several solid-state and flexible TEC-based BTMS technologies, including combinations with air cooling, liquid cooling, phase-change cooling, heat pipe cooling, and various cooling composite techniques. Battery heat generation models and the analysis process of TEC-based BTMS are first discussed. An objective evaluation of the advantages and disadvantages of various TEC-based BTMS approaches is provided, along with discussions on reasonable solutions and future development trends, aiming to provide a reference for designing optimal BTMS. In the end, we point out that it is crucial to select appropriate cooling technologies according to user requirements and to combine multiple cooling technologies for meeting thermal management needs in different application scenarios.