Liquid metal neuro-electrical interface

Xilong Zhang , Chang Liu , Rongyu Tang , Weichen Feng , Jingru Gao , Bingjie Wu , Zhongshan Deng , Jing Liu , Lei Li

Soft Science ›› 2024, Vol. 4 ›› Issue (3) : 23

PDF
Soft Science ›› 2024, Vol. 4 ›› Issue (3) :23 DOI: 10.20517/ss.2023.58
Review Article

Liquid metal neuro-electrical interface

Author information +
History +
PDF

Abstract

Liquid metal (LM), an emerging functional material, plays increasing roles in biomedical and healthcare areas. It has particular values in neural interfaces as it combines high conductivity, flowability, and biocompatibility properties. Neuro-electrical interfaces (NEIs) are effective tools to provide a bridge between the nervous system and the outside world. The main target of developing neural interfaces is to help disabled people repair damaged nerves and enhance human capacity above normal ability. This article systematically summarizes LM-based neural interface technologies, including neural electrodes for electrical signal acquisition and administration of electrical stimulation and nerve guidance conduits for neural connectivity and functional reconstruction. The discussion begins with an overview of the fundamental properties associated with LM materials involved in the field of neural interface applications. The fabrication methods of LM-based neuro-electrodes and conduits are then introduced, and the current development status of LM-based neuro-electrodes and conduits is elaborated. Finally, the prospects and possible challenges of LM-based neural interfaces are outlined.

Keywords

Liquid metal / neural interface / neural electrode / neural guidance conduit

Cite this article

Download citation ▾
Xilong Zhang, Chang Liu, Rongyu Tang, Weichen Feng, Jingru Gao, Bingjie Wu, Zhongshan Deng, Jing Liu, Lei Li. Liquid metal neuro-electrical interface. Soft Science, 2024, 4(3): 23 DOI:10.20517/ss.2023.58

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang F,Rao W.Liquid metals enabled advanced cryobiology: development and perspectives.Soft Sci2024;4:9

[2]

Guo Z,Lu J.Recent advances for liquid metals: synthesis, modification and bio-applications.J Mater Sci Technol2023;143:153-68

[3]

Wang L,Zhang L,Fu L.Emerging liquid metal biomaterials: from design to application.Adv Mater2022;34:e2201956

[4]

Gao W,Wang Q,Liu J.Liquid metal biomaterials for biomedical imaging.J Mater Chem B2022;10:829-42

[5]

Yi L.Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges.Int Mater Rev2017;62:415-40

[6]

Gao S,Wang X.Liquid metal E-tattoo.Sci China Technol Sci2023;66:1551-75

[7]

Tang R,Liu B.Towards an artificial peripheral nerve: liquid metal-based fluidic cuff electrodes for long-term nerve stimulation and recording.Biosens Bioelectron2022;216:114600

[8]

Liu F,Yi L.Liquid metal as reconnection agent for peripheral nerve injury.Sci Bull2016;61:939-47

[9]

Zhang X,Gao J.Liquid metal-based electrode array for neural signal recording.Bioengineering2023;10:578 PMCID:PMC10215194

[10]

Zhang J,Jin C. Liquid metal as connecting or functional recovery channel for the transected sciatic nerve. arXiv. [Preprint.] Apr 7, 2024 [accessed on 2024 Jun 4]. Available from: https://arxiv.org/abs/1404.5931.

[11]

Pereira D,Ramírez-Rodríguez GB,Sousa Â.Silver and antimicrobial polymer nanocomplexes to enhance biocidal effects.Int J Mol Sci2024;25:1256 PMCID:PMC10815966

[12]

Shao Y,Hao C,Li L.Antimicrobial protection of two controlled release silver nanoparticles on simulated silk cultural relic.J Colloid Interface Sci2023;652:901-11

[13]

Mariadhas J,Swart HC.Microwave assisted green synthesis of Ag doped CuO NPs anchored on GO-sheets for high performance photocatalytic and antimicrobial applications.J Ind Eng Chem2023;128:383-95

[14]

Alasvand N,Milan PB,Mobasheri A.Tissue-engineered small-diameter vascular grafts containing novel copper-doped bioactive glass biomaterials to promote angiogenic activity and endothelial regeneration.Mater Today Bio2023;20:100647 PMCID:PMC10232732

[15]

Bozorgi A,Bozorgi M,Soleimani M.Bifunctional tissue-engineered composite construct for bone regeneration: the role of copper and fibrin.J Biomed Mater Res B Appl Biomater2024;112:e35362

[16]

Hamill OP,Neher E,Sigworth FJ.Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pflugers Arch1981;391:85-100

[17]

Mohanty A,Tadayon MA.Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation.Nat Biomed Eng2020;4:223-31

[18]

Jackson N,Anand S,Okandan M.Long-term neural recordings using MEMS based movable microelectrodes in the brain.Front Neuroeng2010;3:10 PMCID:PMC2896301

[19]

Won C,Lee S.Mechanically tissue-like and highly conductive Au nanoparticles embedded elastomeric fiber electrodes of brain–machine interfaces for chronic in vivo brain neural recording.Adv Funct Mater2022;32:2205145

[20]

Santhan A.Construction of 2D niobium carbide-embedded silver/silver phosphate as sensitive disposable electrode material for epinephrine detection in biological real samples.Mater Today Chem2023;27:101332

[21]

Obaid A,Wu YW.Massively parallel microwire arrays integrated with CMOS chips for neural recording.Sci Adv2020;6:eaay2789 PMCID:PMC7083623

[22]

Sharma R,Lee S.Application-specific customizable architectures of Utah neural interfaces.Procedia Eng2011;25:1016-9

[23]

Barz F,Lanzilotto M.Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.J Neural Eng2017;14:036010

[24]

Szymanski LJ,Liu CY.Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient.J Neural Eng2021;18:0460b9

[25]

Tee BCK.Soft electronically functional polymeric composite materials for a flexible and stretchable digital future.Adv Mater2018;30:e1802560

[26]

Zhang J,Liu J.Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery.J Mater Chem B2016;4:5349-57

[27]

Wang X,Zhang J.Printed conformable liquid metal e-skin-enabled spatiotemporally controlled bioelectromagnetics for wireless multisite tumor therapy.Adv Funct Mater2019;29:1907063

[28]

Guo R,Yu W,Liu J.A highly conductive and stretchable wearable liquid metal electronic skin for long-term conformable health monitoring.Sci China Technol Sci2018;61:1031-7

[29]

Branner A.A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats.Brain Res Bull2000;51:293-306

[30]

Lacour SP,Guck J.Materials and technologies for soft implantable neuroprostheses.Nat Rev Mater2016;1:16063

[31]

Guan S,Gu X.Elastocapillary self-assembled neurotassels for stable neural activity recordings.Sci Adv2019;5:eaav2842

[32]

Liang Q,Sun X.Highly stretchable hydrogels as wearable and implantable sensors for recording physiological and brain neural signals.Adv Sci2022;9:e2201059 PMCID:PMC9165511

[33]

Murphy RNA,Singh S,Wong JKF.A quantitative systematic review of clinical outcome measure use in peripheral nerve injury of the upper limb.Neurosurgery2021;89:22-30 PMCID:PMC8203424

[34]

Bhandari PS.Management of peripheral nerve injury.J Clin Orthop Trauma2019;10:862-6 PMCID:PMC6739245

[35]

Geissler J.Management of large peripheral nerve defects with autografting.Injury2019;50 Suppl 5:S64-7

[36]

Boyd KU,Mackinnon SE.Nerve reconstruction in the hand and upper extremity.Clin Plast Surg2011;38:643-60

[37]

Ducic I,Buncke G.Chronic postoperative complications and donor site morbidity after sural nerve autograft harvest or biopsy.Microsurgery2020;40:710-6 PMCID:PMC7540447

[38]

Rezza A, Kulahci Y, Gorantla VS, Zor F, Drzeniek NM. Implantable biomaterials for peripheral nerve regeneration-technology trends and translational tribulations.Front Bioeng Biotechnol2022;10:863969 PMCID:PMC9092979

[39]

Pinho AC,Serra AC,Coelho JF.Peripheral nerve regeneration: current status and new strategies using polymeric materials.Adv Healthc Mater2016;5:2732-44

[40]

Groves MJ,Giometto B.Axotomy-induced apoptosis in adult rat primary sensory neurons.J Neurocytol1997;26:615-24

[41]

Dahlin LB.The biology of nerve injury and repair.J Am Soc Surg Hand2004;4:143-55

[42]

Gao YB,Lin GD.Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial.Neural Regen Res2021;16:1652-9 PMCID:PMC8323693

[43]

Kaplan HM,Kohn J.The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans.J Mater Sci Mater Med2015;26:226 PMCID:PMC4545171

[44]

Dong M,Liu D.Conductive hydrogel for a photothermal-responsive stretchable artificial nerve and coalescing with a damaged peripheral nerve.ACS Nano2020;14:16565-75

[45]

Zhang H,Wen B,Zhao Y.Ultrasound-responsive composited conductive silk conduits for peripheral nerve regeneration.Small Struct2023;4:2300045

[46]

Ahn HS,Kim MS.Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve.Acta Biomater2015;13:324-34

[47]

Wang L,Yang S.A fully biodegradable and self-electrified device for neuroregenerative medicine.Sci Adv2020;6:eabc6686 PMCID:PMC7732202

[48]

Alchagirov BB.The surface tension of molten gallium at high temperatures.High Temp2005;43:791-2

[49]

Surmann P.Voltammetric analysis using a self-renewable non-mercury electrode.Anal Bioanal Chem2005;383:1009-13

[50]

Deng Y,Li J,Mei S.Materials, fundamentals, and technologies of liquid metals toward carbon neutrality.Sci China Technol Sci2023;66:1576-94

[51]

Wang D,Rao W.Precise regulation of Ga-based liquid metal oxidation.Acc Mater Res2021;2:1093-103

[52]

Li P.Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal.J Electron Packaging2011;133:041009

[53]

Assael MJ,Brillo J,Wu J.Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc.J Phys Chem Ref Data2012;41:033101

[54]

Liu T,Kim C.Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices.J Microelectromech Syst2012;21:443-50

[55]

Wang Q,Liu J.Preparations, characteristics and applications of the functional liquid metal materials.Adv Eng Mater2018;20:1700781

[56]

Hao Y,Lv Y.Low melting point alloys enabled stiffness tunable advanced materials.Adv Funct Mater2022;32:2201942

[57]

Sun X,Sheng L,Liu J.Liquid metal enabled injectable biomedical technologies and applications.Appl Mater Today2020;20:100722

[58]

Lawrence JG,Nadarajah A.Elastic properties and morphology of individual carbon nanofibers.ACS Nano2008;2:1230-6

[59]

Guo Y,Grena BJB.Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfaces.ACS Nano2017;11:6574-85

[60]

Sevil B.Synthesis and characterization of polypyrrole nanoparticles and their nanocomposites with poly(propylene).Macromol Symp2010;295:59-64

[61]

Guimard NK,Schmidt CE.Conducting polymers in biomedical engineering.Prog Polym Sci2007;32:876-921

[62]

Zheng Y,Liu J.Pervasive liquid metal based direct writing electronics with roller-ball pen.AIP Adv2013;3:112117

[63]

Wang Q,Yang J.Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing.Adv Mater2015;27:7109-16

[64]

Gao Y,Liu J.Direct writing of flexible electronics through room temperature liquid metal ink.PLoS One2012;7:e45485 PMCID:PMC3446874

[65]

Lee J, Kim CJ. Surface-tension-driven microactuation based on continuous electrowetting.J Microelectromech Syst2000;9:171-80

[66]

Rivnay J,Fenno L,Malliaras GG.Next-generation probes, particles, and proteins for neural interfacing.Sci Adv2017;3:e1601649 PMCID:PMC5466371

[67]

Guimarães CF,Marques AP.The stiffness of living tissues and its implications for tissue engineering.Nat Rev Mater2020;5:351-70

[68]

Zheng Y,Yang J.Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism.Sci Rep2014;4:4588 PMCID:PMC3975221

[69]

Dudley HC.Studies of the toxic action of gallium.J Pharmacol Exp Ther1949;95:487-93Available from: https://jpet.aspetjournals.org/content/95/4/487.full. [Last accessed on 4 Jun 2024]

[70]

Bonchi C,Minandri F,Frangipani E.Repurposing of gallium-based drugs for antibacterial therapy.Biofactors2014;40:303-12

[71]

Wang Q,Pan K.Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy.IEEE Trans Biomed Eng2014;61:2161-6

[72]

Liu H,Wang W.Novel contrast media based on the liquid metal gallium for in vivo digestive tract radiography: a feasibility study.Biometals2019;32:795-801

[73]

Guo R.Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions.J Micromech Microeng2017;27:104002

[74]

Chen S,Sun X,Li L.Toxicity and biocompatibility of liquid metals.Adv Healthc Mater2023;12:2201924

[75]

Khondoker MAH.Fabrication methods and applications of microstructured gallium based liquid metal alloys.Smart Mater Struct2016;25:093001

[76]

Jackson N,Clarke C.Manufacturing methods of stretchable liquid metal-based antenna.Microsyst Technol2019;25:3175-84

[77]

Dong R,Hang C.Printed stretchable liquid metal electrode arrays for in vivo neural recording.Small2021;17:e2006612

[78]

Niu Y,Liang C.Thermal-sinterable EGaIn nanoparticle inks for highly deformable bioelectrode arrays.Adv Healthc Mater2023;12:e2202531

[79]

Dong R,Cheng S.Highly stretchable metal-polymer conductor electrode array for electrophysiology.Adv Healthc Mater2021;10:e2000641

[80]

Wen X,Huang S.Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery.Biosens Bioelectron2019;131:37-45 PMCID:PMC6602555

[81]

Lim T,Akbarian A,Tresco PA.Conductive polymer enabled biostable liquid metal electrodes for bioelectronic applications.Adv Healthc Mater2022;11:e2102382

[82]

Rogers JA,Huang Y.Materials and mechanics for stretchable electronics.Science2010;327:1603-7

[83]

Someya T,Malliaras GG.The rise of plastic bioelectronics.Nature2016;540:379-85

[84]

Matsuhisa N,Bao Z.Materials and structural designs of stretchable conductors.Chem Soc Rev2019;48:2946-66

[85]

Sim K,Ershad F.Rubbery electronics fully made of stretchable elastomeric electronic materials.Adv Mater2020;32:e1902417

[86]

Jiang C.Liquid metal-based paper electronics: materials, methods, and applications.Sci China Technol Sci2023;66:1595-616

[87]

Zhuang Q,Wu M.Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility.Sci Adv2023;9:eadg8602 PMCID:PMC10413659

[88]

Park Y,Lee Y,Vlassak JJ.Liquid-metal micro-networks with strain-induced conductivity for soft electronics and robotic skin.npj Flex Electron2022;6:81

[89]

Hallfors N,Dickey MD.Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform.Lab Chip2013;13:522-6 PMCID:PMC4394010

[90]

Jin C,Li X,Li J.Injectable 3-D fabrication of medical electronics at the target biological tissues.Sci Rep2013;3:3442 PMCID:PMC3853658

[91]

Xing S.Functional micro-/nanostructured gallium-based liquid metal for biochemical sensing and imaging applications.Biosens Bioelectron2024;243:115795

[92]

Zhang M,Huang L.Versatile fabrication of liquid metal nano-ink based flexible electronic devices.Appl Mater Today2021;22:100903

[93]

Lv Y.Interpretation on thermal comfort mechanisms of human bodies by combining Hodgkin-Huxley neuron model and Pennes bioheat equation.Forsch Ingenieurwes2005;69:101-14

[94]

Liu J.Cooling strategies and transport theories for brain hypothermia resuscitation.Front Energy Power Eng China2007;1:32-57

[95]

Jing L. Control of electrical signal transmission across the liquid circuits of biological network through freeze switch. Micronanoelectro Technol 2006. Available from: https://api.semanticscholar.org/CorpusID:113872910. [Last accessed on 4 Jun 2024]

[96]

Benarroch JM.The microbiologist’s guide to membrane potential dynamics.Trends Microbiol2020;28:304-14

[97]

Park JE,Baek J.Rewritable, printable conducting liquid metal hydrogel.ACS Nano2019;13:9122-30

[98]

Park YG,Jang J,Kim E.Liquid metal-based soft electronics for wearable healthcare.Adv Healthc Mater2021;10:e2002280

[99]

Chung WG,Cui G.Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration.Nat Nanotechnol2024;19:688-97 PMCID:PMC11106006

[100]

Zhao G,Wang R.Hydrogel-assisted microfluidic spinning of stretchable fibers via fluidic and interfacial self-adaptations.Sci Adv2023;9:eadj5407 PMCID:PMC10588953

[101]

Zhang X,Deng Z.Bismuth-based liquid metals: advances, applications, and prospects.Mater Horiz2024;11:1369-94

[102]

Lu Y,Dong H.Dynamic leakage-free liquid metals.Adv Funct Mater2023;33:2210961

[103]

Agno KC, Yang K, Byun SH, et al. A temperature-responsive intravenous needle that irreversibly softens on insertion. Nat Biomed Eng 2023.

[104]

Chu XL,Li Q.Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation.Neural Regen Res2022;17:2185-93 PMCID:PMC9083151

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/