Liquid metal neuro-electrical interface
Xilong Zhang , Chang Liu , Rongyu Tang , Weichen Feng , Jingru Gao , Bingjie Wu , Zhongshan Deng , Jing Liu , Lei Li
Soft Science ›› 2024, Vol. 4 ›› Issue (3) : 23
Liquid metal neuro-electrical interface
Liquid metal (LM), an emerging functional material, plays increasing roles in biomedical and healthcare areas. It has particular values in neural interfaces as it combines high conductivity, flowability, and biocompatibility properties. Neuro-electrical interfaces (NEIs) are effective tools to provide a bridge between the nervous system and the outside world. The main target of developing neural interfaces is to help disabled people repair damaged nerves and enhance human capacity above normal ability. This article systematically summarizes LM-based neural interface technologies, including neural electrodes for electrical signal acquisition and administration of electrical stimulation and nerve guidance conduits for neural connectivity and functional reconstruction. The discussion begins with an overview of the fundamental properties associated with LM materials involved in the field of neural interface applications. The fabrication methods of LM-based neuro-electrodes and conduits are then introduced, and the current development status of LM-based neuro-electrodes and conduits is elaborated. Finally, the prospects and possible challenges of LM-based neural interfaces are outlined.
Liquid metal / neural interface / neural electrode / neural guidance conduit
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
Rezza A, Kulahci Y, Gorantla VS, Zor F, Drzeniek NM. Implantable biomaterials for peripheral nerve regeneration-technology trends and translational tribulations.Front Bioeng Biotechnol2022;10:863969 PMCID:PMC9092979 |
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
Lee J, Kim CJ. Surface-tension-driven microactuation based on continuous electrowetting.J Microelectromech Syst2000;9:171-80 |
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
Jing L. Control of electrical signal transmission across the liquid circuits of biological network through freeze switch. Micronanoelectro Technol 2006. Available from: https://api.semanticscholar.org/CorpusID:113872910. [Last accessed on 4 Jun 2024] |
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
Agno KC, Yang K, Byun SH, et al. A temperature-responsive intravenous needle that irreversibly softens on insertion. Nat Biomed Eng 2023. |
| [104] |
|
/
| 〈 |
|
〉 |