Electrolyte engineering in organic electrochemical transistors for advanced electrophysiology

Yanlan Zhu , Xiaomin Xu

Soft Science ›› 2024, Vol. 4 ›› Issue (3) : 21

PDF
Soft Science ›› 2024, Vol. 4 ›› Issue (3) :21 DOI: 10.20517/ss.2024.01
Perspective

Electrolyte engineering in organic electrochemical transistors for advanced electrophysiology

Author information +
History +
PDF

Abstract

Electrophysiology is an indispensable tool in the early diagnosis of a wide range of diseases, making the precise, continuous, and stable recording of electrophysiological signals critically important. Organic electrochemical transistors stand out among various electrophysiological recording devices, offering a high signal-to-noise ratio due to their intrinsic amplification capability. However, despite their inherent advantages, several challenges persist in practical scenarios, such as the stability of wearable devices, limited spatiotemporal resolution, and undesired inter-channel crosstalk in implantable systems. Addressing these challenges may require innovative approaches in electrolyte engineering. This perspective summarizes the latest advancements and ongoing hurdles in the electrolyte engineering of organic electrochemical transistors, highlighting their potential to revolutionize advanced electrophysiological applications.

Keywords

Organic electrochemical transistors / electrolyte engineering / electrophysiology

Cite this article

Download citation ▾
Yanlan Zhu, Xiaomin Xu. Electrolyte engineering in organic electrochemical transistors for advanced electrophysiology. Soft Science, 2024, 4(3): 21 DOI:10.20517/ss.2024.01

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schaap J,Meijer JH.Electrophysiology of the circadian pacemaker in mammals.Chronobiol Int2003;20:171-88

[2]

Watanabe M,Polo-Parada L,Gu S.Probing the electrophysiology of the developing heart.J Cardiovasc Dev Dis2016;3:10 PMCID:PMC5715694

[3]

Bean BP.The action potential in mammalian central neurons.Nat Rev Neurosci2007;8:451-65

[4]

Gupta P,Chang HY,Santra TS.A single-neuron: current trends and future prospects.Cells2020;9:1528 PMCID:PMC7349798

[5]

Janse MJ.Electrophysiological changes in heart failure and their relationship to arrhythmogenesis.Cardiovasc Res2004;61:208-17

[6]

Collins KK.The spectrum of long-term electrophysiologic abnormalities in patients with univentricular hearts.Congenit Heart Dis2009;4:310-7

[7]

Freed JK.Communication is key: mechanisms of intercellular signaling in vasodilation.J Cardiovasc Pharmacol2017;69:264-72 PMCID:PMC5424612

[8]

Hogenesch JB.Intracellular and intercellular processes determine robustness of the circadian clock.FEBS Lett2011;585:1427-34 PMCID:PMC3117285

[9]

Birbaumer N.Breaking the silence: brain-computer interfaces (BCI) for communication and motor control.Psychophysiology2006;43:517-32

[10]

Feldmann LK,Neumann WJ.Toward therapeutic electrophysiology: beta-band suppression as a biomarker in chronic local field potential recordings.NPJ Parkinsons Dis2022;8:44 PMCID:PMC9018912

[11]

Lou Z,Wei B.Near-infrared organic photodetectors toward skin-integrated photoplethysmography-electrocardiography multimodal sensing system.Adv Sci2023;10:e2304174 PMCID:PMC10754100

[12]

Arquilla K,Anderson AP.Textile electrocardiogram (ECG) electrodes for wearable health monitoring.Sensors2020;20:1013 PMCID:PMC7070603

[13]

Wei B,Guo H.Ultraflexible tattoo electrodes for epidermal and in vivo electrophysiological recording.Cell Rep Phys Sci2023;4:101335

[14]

Krachunov S.3D printed dry EEG electrodes.Sensors2016;16:1635 PMCID:PMC5087423

[15]

Bartolomei F,Wendling F.Defining epileptogenic networks: contribution of SEEG and signal analysis.Epilepsia2017;58:1131-47

[16]

Hu J,Navabi ZS.Fully desktop fabricated flexible graphene electrocorticography (ECoG) arrays.J Neural Eng2022;20:016019. PMCID:PMC10027363

[17]

Alahi MEE,Xu Z,Wu T.Recent advancement of electrocorticography (ECoG) electrodes for chronic neural recording/stimulation.Mater Today Commun2021;29:102853

[18]

Zhu M,Li S.Flexible electrodes for in vivo and in vitro electrophysiological signal recording.Adv Healthc Mater2021;10:e2100646

[19]

Tonekabony Shad E, Molinas M, Ytterdal T. Impedance and noise of passive and active dry EEG electrodes: a review.IEEE Sensors J2020;20:14565-77

[20]

Xu W,Cheng S.Flexible organic transistors for neural activity recording.Appl Phys Rev2022;9:031308

[21]

Schaefer N,Martínez-aguilar J.Multiplexed neural sensor array of graphene solution-gated field-effect transistors.2D Mater2020;7:025046

[22]

Rashid RB,Rivnay J.Organic electrochemical transistors in bioelectronic circuits.Biosens Bioelectron2021;190:113461

[23]

Donahue MJ,Strakosas X.High-performance vertical organic electrochemical transistors.Adv Mater2018;30:1705031

[24]

Keene ST,Cooke R,Salleo A.Wearable organic electrochemical transistor patch for multiplexed sensing of calcium and ammonium ions from human perspiration.Adv Healthc Mater2019;8:e1901321

[25]

Zhong Y,Inal S.Decoding electrophysiological signals with organic electrochemical transistors.Macromol Biosci2021;21:e2100187

[26]

Rivnay J,Salleo A,Berggren M.Organic electrochemical transistors.Nat Rev Mater2018;3:17086

[27]

Li T,Moudgil A.Biocompatible ionic liquids in high-performing organic electrochemical transistors for ion detection and electrophysiological monitoring.ACS Nano2022;16:12049-60

[28]

Leleux P,Lonjaret T.Organic electrochemical transistors for clinical applications.Adv Healthc Mater2015;4:142-7

[29]

Khodagholy D,Quilichini P.In vivo recordings of brain activity using organic transistors.Nat Commun2013;4:1575 PMCID:PMC3615373

[30]

Wang W,Zhong D.Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin.Science2023;380:735-42

[31]

Wu M,Huang N.Ultrathin, soft, bioresorbable organic electrochemical transistors for transient spatiotemporal mapping of brain activity.Adv Sci2023;10:e2300504 PMCID:PMC10190644

[32]

Park S,Lee W.Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics.Nature2018;561:516-21

[33]

Lee H,Lee W,Fukuda K.Ultrathin organic electrochemical transistor with nonvolatile and thin gel electrolyte for long-term electrophysiological monitoring.Adv Funct Mater2019;29:1906982

[34]

Wu X,Hidalgo TC.Ionic-liquid induced morphology tuning of PEDOT:PSS for high-performance organic electrochemical transistors.Adv Funct Mater2022;32:2108510

[35]

Jeong SY,Lee S.Ion gel-gated quasi-solid-state vertical organic electrochemical transistor and inverter.Adv Elect Mater2023;9:2300053

[36]

Yang A,Liu H,Li L.Wearable organic electrochemical transistor array for skin-surface electrocardiogram mapping above a human heart.Adv Funct Mater2023;33:2215037

[37]

Nguyen-dang T,Lill A.Biomaterial-based solid-electrolyte organic electrochemical transistors for electronic and neuromorphic applications.Adv Elect Mater2021;7:2100519

[38]

del Agua I,Curto VF.A Na+ conducting hydrogel for protection of organic electrochemical transistors.J Mater Chem B2018;6:2901-6

[39]

Jo YJ,Ok J.Biocompatible and biodegradable organic transistors using a solid-state electrolyte incorporated with choline-based ionic liquid and polysaccharide.Adv Funct Mater2020;30:1909707

[40]

Wang W,Li M.High-transconductance, highly elastic, durable and recyclable all-polymer electrochemical transistors with 3D micro-engineered interfaces.Nanomicro Lett2022;14:184

[41]

Wang J,Yokota T.Gas-permeable organic electrochemical transistor embedded with a porous solid-state polymer electrolyte as an on-skin active electrode for electrophysiological signal acquisition.Adv Funct Mater2022;32:2200458

[42]

Cheng S,Zhang L.Ultrathin hydrogel films toward breathable skin-integrated electronics.Adv Mater2023;35:e2206793

[43]

Bernards D.Steady-state and transient behavior of organic electrochemical transistors.Adv Funct Mater2007;17:3538-44

[44]

Sun H,Wang S.Complementary logic circuits based on high-performance n-type organic electrochemical transistors.Adv Mater2018;30:1704916

[45]

Yang CY,Ruoko TP.A high-conductivity n-type polymeric ink for printed electronics.Nat Commun2021;12:2354 PMCID:PMC8060302

[46]

Wu X,Moser M.High performing solid-state organic electrochemical transistors enabled by glycolated polythiophene and ion-gel electrolyte with a wide operation temperature range from -50 to 110 °C.Adv Funct Mater2023;33:2209354

[47]

Uguz I,Yilmaz S.Complementary integration of organic electrochemical transistors for front-end amplifier circuits of flexible neural implants.Sci Adv2024;10:eadi9710 PMCID:PMC10959418

[48]

Huang W,Yao Y.Vertical organic electrochemical transistors for complementary circuits.Nature2023;613:496-502 PMCID:PMC9849123

[49]

Duan J,Chen J.Highly efficient mixed conduction in a fused oligomer n-type organic semiconductor enabled by 3D transport pathways.Adv Mater2023;35:e2300252

[50]

Moser M,Surgailis J.Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability.Adv Mater2020;32:e2002748

[51]

Savva A,Cendra C.Balancing ionic and electronic conduction for high-performance organic electrochemical transistors.Adv Funct Mater2020;30:1907657

[52]

Nielsen CB,Sbircea DT.Molecular design of semiconducting polymers for high-performance organic electrochemical transistors.J Am Chem Soc2016;138:10252-9 PMCID:PMC4991841

[53]

Kim JH,Jo IY.Peculiar transient behaviors of organic electrochemical transistors governed by ion injection directionality.Nat Commun2023;14:7577 PMCID:PMC10684893

[54]

Wang B,Zhang S.Face-on orientation matches vertical organic electrochemical transistors for high transconductance and superior non-volatility.Adv Funct Mater2024;34:2312822

[55]

Spyropoulos GD,Khodagholy D.Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics.Sci Adv2019;5:eaau7378 PMCID:PMC6392764

[56]

Cea C,Wisniewski DJ.Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics.Nat Mater2023;22:1227-35 PMCID:PMC10533388

[57]

Kushida S,Yoshinaga K.Fast response organic supramolecular transistors utilizing in-situ π-ion gels.Adv Mater2021;33:e2006061

[58]

Uguz I,Arslan V.Flexible switch matrix addressable electrode arrays with organic electrochemical transistor and pn diode technology.Nat Commun2024;15:533 PMCID:PMC10789794

[59]

Deng J,Wu J.Electrical bioadhesive interface for bioelectronics.Nat Mater2021;20:229-36

[60]

Han IK,Jung SM.Electroconductive, adhesive, non-swelling, and viscoelastic hydrogels for bioelectronics.Adv Mater2023;35:e2203431

[61]

Li N,Cheng Z.Bioadhesive polymer semiconductors and transistors for intimate biointerfaces.Science2023;381:686-93 PMCID:PMC10768720

AI Summary AI Mindmap
PDF

393

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/