Controlling the lifetime of biodegradable electronics: from dissolution kinetics to trigger acceleration

You-Jung Park , Young-In Ryu , Myung-Kyun Choi , Kyung-Sub Kim , Seung-Kyun Kang

Soft Science ›› 2024, Vol. 4 ›› Issue (3) : 16

PDF
Soft Science ›› 2024, Vol. 4 ›› Issue (3) :16 DOI: 10.20517/ss.2024.06
Review Article

Controlling the lifetime of biodegradable electronics: from dissolution kinetics to trigger acceleration

Author information +
History +
PDF

Abstract

Biodegradable electronics have revolutionized the field of medical devices by offering inherent advantages such as natural disintegration after a useful functional period, thereby eliminating the need for removal surgery. This paradigm shift addresses challenges with long-term implantation, the risks of secondary surgeries, and potential complications, offering a safer and more patient-friendly approach to temporary implantable devices. This review delves into the dissolution kinetics of materials and strategies for lifetime control providing a comprehensive overview of recent advancements in biodegradable electronics. Understanding the kinetics is crucial for meeting the required functional lifetime for implantable medical applications, which varies based on application scope and target diseases. The dissolution kinetics of silicon and biodegradable metals form the core of the discussion, focusing on recent studies aimed at controlling the dissolution rate and enhancing properties. The exploration extends to ideas for accelerating material degradation or initiating on-demand degradation in biodegradable electronics after stable function. Additionally, the compilation of encapsulation layer materials and strategies enhances understanding of how to improve the stable operation time of devices. Emphasis is placed on efforts to adjust the lifetime of biodegradable electronics, particularly in medical applications.

Keywords

Biodegradable electronics / lifetime control / dissolution kinetics / encapsulation materials / trigger acceleration / medical applications

Cite this article

Download citation ▾
You-Jung Park, Young-In Ryu, Myung-Kyun Choi, Kyung-Sub Kim, Seung-Kyun Kang. Controlling the lifetime of biodegradable electronics: from dissolution kinetics to trigger acceleration. Soft Science, 2024, 4(3): 16 DOI:10.20517/ss.2024.06

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hwang SW,Kim DH.A physically transient form of silicon electronics.Science2012;337:1640-4 PMCID:PMC3786576

[2]

Kang S,Bettinger C.The emergence of transient electronic devices.MRS Bull2020;45:87-95

[3]

Kim G,Lee Y.Biodegradable materials and devices for neuroelectronics.MRS Bulletin2023;48:518-30

[4]

Christensen MB,Ledbetter NM,Clark GA.The foreign body response to the Utah Slant Electrode Array in the cat sciatic nerve.Acta Biomater2014;10:4650-60

[5]

Kang SK,Hwang SW.Bioresorbable silicon electronic sensors for the brain.Nature2016;530:71-6

[6]

Yu KJ,Hwang SW.Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex.Nat Mater2016;15:782-91 PMCID:PMC4919903

[7]

Kim J,Lee JY.Electroceuticals for regeneration of long nerve gap using biodegradable conductive conduits and implantable wireless stimulator.Adv Sci2023;10:e2302632 PMCID:PMC10460856

[8]

Shin J,Bai W.Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes.Nat Biomed Eng2019;3:37-46

[9]

Yang SM,Cho HU.Hetero-integration of silicon nanomembranes with 2D materials for bioresorbable, wireless neurochemical system.Adv Mater2022;34:e2108203

[10]

Lu D,Avila R.Bioresorbable, wireless, passive sensors as temporary implants for monitoring regional body temperature.Adv Healthc Mater2020;9:e2000942

[11]

Boutry CM,Kaizawa Y.Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow.Nat Biomed Eng2019;3:47-57

[12]

Son D,Lee DJ.Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases.ACS Nano2015;9:5937-46

[13]

Choi YS,Pfenniger A.Fully implantable and bioresorbable cardiac pacemakers without leads or batteries.Nat Biotechnol2021;39:1228-38 PMCID:PMC9270064

[14]

Liu Z,Cao L.Photoelectric cardiac pacing by flexible and degradable amorphous Si radial junction stimulators.Adv Healthc Mater2020;9:e1901342

[15]

Koo J,Kang SK.Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy.Nat Med2018;24:1830-6

[16]

Chen P,Wu P.Wirelessly powered electrical-stimulation based on biodegradable 3D piezoelectric scaffolds promotes the spinal cord injury repair.ACS Nano2022;16:16513-28

[17]

Guo H,Zhao J.Advanced materials in wireless, implantable electrical stimulators that offer rapid rates of bioresorption for peripheral axon regeneration.Adv Funct Mater2021;31:2102724 PMCID:PMC9521812

[18]

Wang H,Jiang Y.A 3D biomimetic optoelectronic scaffold repairs cranial defects.Sci Adv2023;9:eabq7750 PMCID:PMC9931229

[19]

Choi Y,Rogers JA.Inorganic materials for transient electronics in biomedical applications.MRS Bull2020;45:103-12

[20]

Reeder JT,Yang Q.Soft, bioresorbable coolers for reversible conduction block of peripheral nerves.Science2022;377:109-15

[21]

Lee G,Yoon HJ.A bioresorbable peripheral nerve stimulator for electronic pain block.Sci Adv2022;8:eabp9169 PMCID:PMC9534494

[22]

Lee J,Cha GD.Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors.Nat Commun2019;10:5205 PMCID:PMC6858362

[23]

Koo J,Choi YS.Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion.Sci Adv2020;6:eabb1093 PMCID:PMC7455185

[24]

Lee CH,Harburg DV.Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants.NPG Asia Mater2015;7:e227 PMCID:PMC4861403

[25]

Zhang Y,Zhang Y.Self-powered, light-controlled, bioresorbable platforms for programmed drug delivery.Proc Natl Acad Sci U S A2023;120:e2217734120 PMCID:PMC10089205

[26]

Huang Y,Hu T.Implantable electronic medicine enabled by bioresorbable microneedles for wireless electrotherapy and drug delivery.Nano Lett2022;22:5944-53

[27]

Park W,Jeon Y.Biodegradable silicon nanoneedles for ocular drug delivery.Sci Adv2022;8:eabn1772 PMCID:PMC8967230

[28]

Li H,Wang P.Biodegradable flexible electronic device with controlled drug release for cancer treatment.ACS Appl Mater Interfaces2021;13:21067-75

[29]

Yin L,Mao S.Dissolvable metals for transient electronics.Adv Funct Mater2014;24:645-58

[30]

Lee YK,Song E.Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics.ACS Nano2017;11:12562-72

[31]

Choi YS,Lee YJ.Biodegradable polyanhydrides as encapsulation layers for transient electronics.Adv Funct Mater2020;30:2000941

[32]

Hosseini ES,Ganguly P.Biodegradable materials for sustainable health monitoring devices.ACS Appl Bio Mater2021;4:163-94 PMCID:PMC8022537

[33]

Li R,Su Y.An analytical model of reactive diffusion for transient electronics.Adv Funct Mater2013;23:3106-14

[34]

Han WB,Yang SM.Micropatterned elastomeric composites for encapsulation of transient electronics.ACS Nano2023;17:14822-30

[35]

Won SM,Crawford KE.Natural wax for transient electronics.Adv Funct Mater2018;28:1801819

[36]

Khan I,Dutta JR.Enzyme-embedded degradation of poly(ε-caprolactone) using lipase-derived from probiotic lactobacillus plantarum.ACS Omega2019;4:2844-52 PMCID:PMC6648548

[37]

DelRe C,Jayapurna I.Synergistic enzyme mixtures to realize near-complete depolymerization in biodegradable polymer/additive blends.Adv Mater2021;33:e2105707

[38]

DelRe C,Kang P.Near-complete depolymerization of polyesters with nano-dispersed enzymes.Nature2021;592:558-63

[39]

Kalita NK.Triggering degradation of cellulose acetate by embedded enzymes: accelerated enzymatic degradation and biodegradation under simulated composting conditions.Biomacromolecules2023;24:3290-303 PMCID:PMC10336969

[40]

Shim JS,Kang SK.Physically transient electronic materials and devices.Mater Sci Eng R Rep2021;145:100624

[41]

Hwang SW,Edwards C.Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics.ACS Nano2014;8:5843-51

[42]

Yin L,Min K.Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics.Adv Mater2015;27:1857-64

[43]

Rimstidt JD.The kinetics of silica-water reactions.Geochim Cosmochim Acta1980;44:1683-99

[44]

Wang L,Dai F.Geometrical and chemical-dependent hydrolysis mechanisms of silicon nanomembranes for biodegradable electronics.ACS Appl Mater Interfaces2019;11:18013-23

[45]

Maximchik PV,Sheval EV.Biodegradable porous silicon nanocontainers as an effective drug carrier for regulation of the tumor cell death pathways.ACS Biomater Sci Eng2019;5:6063-71

[46]

Liu S,Liu S.Laser-triggered degradation of silicon circuits by lithiation and moisture uptake for on-demand transient electronics.Adv Eng Mater2023;25:2300213

[47]

Wang H,Lu B.Degradation study of thin-film silicon structures in a cell culture medium.Sensors2022;22:802 PMCID:PMC8838160

[48]

Hwang SW,Cheng H.25th anniversary article: materials for high-performance biodegradable semiconductor devices.Adv Mater2014;26:1992-2000

[49]

Kang SK,Kim K.Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.ACS Appl Mater Interfaces2015;7:9297-305

[50]

Zhou W,Fu TM,Liu J.Long term stability of nanowire nanoelectronics in physiological environments.Nano Lett2014;14:1614-9 PMCID:PMC3960854

[51]

Steinbach A,Nilsen M.The electronic properties of silicon nanowires during their dissolution under simulated physiological conditions.Appl Sci2019;9:804

[52]

Seidel H,Heuberger A.Anisotropic etching of crystalline silicon in alkaline solutions: II . Influence of dopants.J Electrochem Soc1990;137:3626-32

[53]

Borenstein JT,Currie MT.A new ultra-hard etch-stop layer for high precision micromachining. In: Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291); 1999 Jan 21; Orlando, FL, USA. IEEE; 1999. pp. 205-10.

[54]

Zhang A,Lieber CM.Nanowire-enabled bioelectronics.Nano Today2021;38:101135 PMCID:PMC10038126

[55]

Hulst HC. Light scattering by small particles. Courier Corporation;1981. Available from: https://books.google.com/books/about/Light_Scattering_by_Small_Particles.html?id=PlHfPMVAFRcC. [Last accessed on 18 Apr 2024]

[56]

Patolsky F,Yu G.Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays.Science2006;313:1100-4

[57]

Tian B,Dvir T.Macroporous nanowire nanoelectronic scaffolds for synthetic tissues.Nat Mater2012;11:986-94 PMCID:PMC3623694

[58]

Kang RH,Kang S,Hur JK.Systematic degradation rate analysis of surface-functionalized porous silicon nanoparticles.Materials2019;12:580 PMCID:PMC6416615

[59]

Volovlikova O,Lazarenko P.Influence of illumination on porous silicon formed by photo-assisted etching of p-type Si with a different doping level.Micromachines2020;11:199 PMCID:PMC7074670

[60]

Gongalsky MB,Maksutova DE.Optical monitoring of the biodegradation of porous and solid silicon nanoparticles.Nanomaterials2021;11:2167 PMCID:PMC8466475

[61]

Park JH,von Maltzahn G,Bhatia SN.Biodegradable luminescent porous silicon nanoparticles for in vivo applications.Nat Mater2009;8:331-6 PMCID:PMC3058936

[62]

Chen Y,Zhang Y.Electrochemically triggered degradation of silicon membranes for smart on-demand transient electronic devices.Nanotechnology2019;30:394002

[63]

Pandey SS,Xie Y.Self-destructing secured microchips by on-chip triggered energetic and corrosive attacks for transient electronics.Adv Mater Technol2018;3:1800044

[64]

Li G,Huang G.High-temperature-triggered thermally degradable electronics based on flexible silicon nanomembranes.Adv Funct Mater2018;28:1801448

[65]

de Ven J, Nabben HJP. Photo-assisted etching of p-type semiconductors.J Electrochem Soc1991;138:3401-6

[66]

Ryu H,Rogers JA.Bioresorbable metals for biomedical applications: from mechanical components to electronic devices.Adv Healthc Mater2021;10:e2002236

[67]

Kang S,Yu S.Biodegradable thin metal foils and spin-on glass materials for transient electronics.Adv Funct Mater2015;25:1789-97

[68]

Gu JW,Li G.Corrosion characteristics of single-phase Mg-3Zn alloy thin film for biodegradable electronics.J Magnes Alloys2023;11:3241-54

[69]

Schauer A,Scheibler J.Biocompatibility and degradation behavior of molybdenum in an in vivo rat model.Materials2021;14:7776 PMCID:PMC8705131

[70]

Li C,Fitzpatrick V.Design of biodegradable, implantable devices towards clinical translation.Nat Rev Mater2020;5:61-81

[71]

Irimia-Vladu M,Reisinger M.Biocompatible and biodegradable materials for organic field-effect transistors.Adv Funct Mater2010;20:4069-76

[72]

Lei T,Liu J.Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics.Proc Natl Acad Sci U S A2017;114:5107-12 PMCID:PMC5441761

[73]

Liu K,Feig VR.Biodegradable and stretchable polymeric materials for transient electronic devices.MRS Bull2020;45:96-102

[74]

Hwang S,Tao H.Materials and fabrication processes for transient and bioresorbable high-performance electronics.Adv Funct Mater2013;23:4087-93

[75]

Hwang SW,Huang X.High-performance biodegradable/transient electronics on biodegradable polymers.Adv Mater2014;26:3905-11

[76]

Nie FL,Wei SC,Yang G.In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron.Biomed Mater2010;5:065015

[77]

Frontmatter. In: Revie RW, editor. Uhlig’s corrosion handbook. 3rd ed. Wiley; 2011. Available from: https://onlinelibrary.wiley.com/doi/10.1002/9780470872864.fmatter. [Last accessed on 18 Apr 2024]

[78]

De Rosa L, Tomachuk CR, Springer J, Mitton DB, Saiello S, Bellucci F. The wet corrosion of molybdenum thin film -. Part I: Behavior at 25 °C.Mater Corros2004;55:602-9

[79]

Youssef K,Fedkiw P.Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition.Corros Sci2004;46:51-64

[80]

Kneer EA,Mathew V,Jeon JS.Electrochemical measurements during the chemical mechanical polishing of tungsten thin films.J Electrochem Soc1997;144:3041-9

[81]

Blawert C,Scharnagl N.Different underlying corrosion mechanism for mg bulk alloys and mg thin films.Plasma Process Polym2009;6:S690-4

[82]

Miyake K,Takahashi H.Formation of iron film by ion beam deposition.Surf Coat Technol1994;65:208-13

[83]

Han H,Jun I.Current status and outlook on the clinical translation of biodegradable metals.Mater Today2019;23:57-71

[84]

Bae JY,Hwang GS.Biodegradable metallic glass for stretchable transient electronics.Adv Sci2021;8:2004029 PMCID:PMC8132068

[85]

Thekkepat K,Choi J.Computational design of Mg alloys with minimal galvanic corrosion.J Magnes Alloys2022;10:1972-80

[86]

Cai S,Li N.Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys.Mater Sci Eng C2012;32:2570-7

[87]

Schlüter K,Piorra A.Comparison of the corrosion behaviour of bulk and thin film magnesium alloys.Corros Sci2010;52:3973-7

[88]

Zhang Y,Li S,Zhao K.Advances in bioresorbable materials and electronics.Chem Rev2023;123:11722-73

[89]

Turnlund J,Peiffer G.Molybdenum absorption, excretion, and retention studied with stable isotopes in young men during depletion and repletion.Am J Clin Nutr1995;61:1102-9

[90]

Song JW,Bai W.Bioresorbable, wireless, and battery-free system for electrotherapy and impedance sensing at wound sites.Sci Adv2023;9:eade4687 PMCID:PMC9946359

[91]

Wan L,Zhu H.Tough and water-resistant bioelastomers with active-controllable degradation rates.ACS Appl Mater Interfaces2024;16:6356-66

[92]

Choi YS,Koo J.Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration.Nat Commun2020;11:5990 PMCID:PMC7688647

[93]

Fang H,Yu KJ.Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems.Proc Natl Acad Sci U S A2016;113:11682-7 PMCID:PMC5081656

[94]

Feig VR,Bao Z.Biodegradable polymeric materials in degradable electronic devices.ACS Cent Sci2018;4:337-48 PMCID:PMC5879474

[95]

Fu KK,Dai J,Hu L.Transient electronics: materials and devices.Chem Mater2016;28:3527-39

[96]

Han WB,Shin JW.Advanced materials and systems for biodegradable, transient electronics.Adv Mater2020;32:e2002211

[97]

Huang X.Materials and applications of bioresorbable electronics.J Semicond2018;39:011003

[98]

Kang S,Cheng H.Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics.Adv Funct Mater2014;24:4427-34

[99]

Fang W,Pedevilla P,Richardson JO.Origins of fast diffusion of water dimers on surfaces.Nat Commun2020;11:1689 PMCID:PMC7125088

[100]

Lee YK,Kim Y.Kinetics and chemistry of hydrolysis of ultrathin, thermally grown layers of silicon oxide as biofluid barriers in flexible electronic systems.ACS Appl Mater Interfaces2017;9:42633-8 PMCID:PMC6800003

[101]

Yang Q,Xue Y.Materials, mechanics designs, and bioresorbable multisensor platforms for pressure monitoring in the intracranial space.Adv Funct Mater2020;30:1910718

[102]

McDonald SM,Hsu YH.Resorbable barrier polymers for flexible bioelectronics.Nat Commun2023;14:7299 PMCID:PMC10638316

[103]

Hodgson A.Water adsorption and the wetting of metal surfaces.Surf Sci Rep2009;64:381-451

[104]

Maier S.How does water wet a surface?.Acc Chem Res2015;48:2783-90

[105]

Fang H,Yu KJ.Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems.Proc Natl Acad Sci U S A2016;113:11682-7 PMCID:PMC5081656

[106]

Peng X,Wu Z,Wang ZL.A review on emerging biodegradable polymers for environmentally benign transient electronic skins.J Mater Sci2021;56:16765-89

[107]

Tariq A,Khalid MY.Recent advances in the additive manufacturing of stimuli-responsive soft polymers.Adv Eng Mater2023;25:2301074

[108]

Shi Z,Zhou Z.Silk-enabled conformal multifunctional bioelectronics for investigation of spatiotemporal epileptiform activities and multimodal neural encoding/decoding.Adv Sci2019;6:1801617 PMCID:PMC6498121

[109]

Wen DL,Huang P.Recent progress in silk fibroin-based flexible electronics.Microsyst Nanoeng2021;7:35 PMCID:PMC8433308

[110]

Cointe C,Nowak LG.Scalable batch fabrication of ultrathin flexible neural probes using a bioresorbable silk layer.Microsyst Nanoeng2022;8:21 PMCID:PMC8847482

[111]

Moreno S,Mohammed S.Biocompatible collagen films as substrates for flexible implantable electronics.Adv Elect Mater2015;1:1500154

[112]

Moreno S,Rodriguez-davila RA.Bioelectronics on mammalian collagen.Adv Elect Mater2020;6:2000391

[113]

Takeya H,Kimura H.Schwann cell-encapsulated chitosan-collagen hydrogel nerve conduit promotes peripheral nerve regeneration in rodent sciatic nerve defect models.Sci Rep2023;13:11932 PMCID:PMC10366170

[114]

Wang L,Wang K.Biocompatible and biodegradable functional polysaccharides for flexible humidity sensors.Research2020;2020:8716847 PMCID:PMC7171591

[115]

Xiang H,Liu H,Zhou H.Green flexible electronics based on starch.npj Flex Electron2022;6:15

[116]

Lee S,Bae J.Ecofriendly transfer printing for biodegradable electronics using adhesion controllable self-assembled monolayers.Adv Funct Mater2024;34:2310612

[117]

Wei Z,Guo Q.Recent progress on bioresorbable passive electronic devices and systems.Micromachines2021;12:600 PMCID:PMC8224698

[118]

Lu D,Deng Y.Bioresorbable wireless sensors as temporary implants for in vivo measurements of pressure.Adv Funct Mater2020;30:2003754

[119]

Kim K,Shim J.Biodegradable molybdenum/polybutylene adipate terephthalate conductive paste for flexible and stretchable transient electronics.Adv Mater Technol2022;7:2001297

[120]

Vieira AC,Tita V.Considerations for the design of polymeric biodegradable products.J Polym Eng2013;33:293-302

[121]

Kim H,Jang J.Effects of surface geometry on the wenzel-to-cassie transition of a water droplet.Bulletin Korean Chem Soc2017;38:1010-5

[122]

Jeong SI,Lee YM,Kim SH.Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds.Biomacromolecules2004;5:1303-9

[123]

Ganesh M,L’amoreaux W.Embedded enzymatic biomaterial degradation.Macromolecules2009;42:6836-9

[124]

Huang Q,Kabe T,Iwata T.Enzymatic self-biodegradation of poly(l-lactic acid) films by embedded heat-treated and immobilized proteinase K.Biomacromolecules2020;21:3301-7

[125]

Huang Q,Iwata T.Development of self-degradable aliphatic polyesters by embedding lipases via melt extrusion.Polym Degrad Stab2021;190:109647

[126]

Anderson EM,Kirk O.One biocatalyst-many applications: the use of candida antarctica b-lipase in organic synthesis.Biocatal Biotransformation1998;16:181-204

[127]

Jaeger KE,Dijkstra BW,van Heuvel M.Bacterial lipases.FEMS Microbiol Rev1994;15:29-63

[128]

Uppenberg J,Patkar S.The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica.Structure1994;2:293-308

[129]

Uppenberg J,Norin M.Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols.Biochemistry1995;34:16838-51

[130]

Patil P,McCune JT.Reactive oxygen species-degradable polythioketal urethane foam dressings to promote porcine skin wound repair.Sci Transl Med2022;14:eabm6586 PMCID:PMC10165619

[131]

Lee DM,Hyun I.Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics.Sci Adv2022;8:eabl8423

[132]

Dunnill C,Brennan J.Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process.Int Wound J2017;14:89-96 PMCID:PMC7950185

[133]

Liu B.Mechanistic investigation on oxidative degradation of ROS-responsive thioacetal/thioketal moieties and their implications.Cell Rep Phys Sci2020;1:100271

[134]

Imani IM,Xiao X.Ultrasound-driven on-demand transient triboelectric nanogenerator for subcutaneous antibacterial activity.Adv Sci2023;10:e2204801 PMCID:PMC9875681

[135]

Yeingst TJ,Rawnaque FS.Controlled degradation of polycaprolactone polymers through ultrasound stimulation.ACS Appl Mater Interfaces2023;15:34607-16 PMCID:PMC10496768

[136]

Mahmoodian N.A framework of photo acoustic imaging for ovarian cancer detection by galvo-mirror system.J Bioeng Biomed Sci2016;6:2

[137]

Franco A.The ultrasounds as a mean for the enhancement of heat exchanger performances: an analysis of the available data.J Phys Conf Ser2019;1224:012035

[138]

Gregoritza M.The Diels-Alder reaction: a powerful tool for the design of drug delivery systems and biomaterials.Eur J Pharm Biopharm2015;97:438-53

[139]

Shi Z,Luo J.Tuning the kinetics and energetics of diels-alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers.Chem Mater2010;22:5601-8

[140]

Kim DH,Amsden J.Silicon electronics on silk as a path to bioresorbable, implantable devices.Appl Phys Lett2009;95:133701 PMCID:PMC2816979

[141]

Hall-Stoodley L,Stoodley P.Bacterial biofilms: from the natural environment to infectious diseases.Nat Rev Microbiol2004;2:95-108

[142]

Kang SK,Lee YK.Advanced materials and devices for bioresorbable electronics.Acc Chem Res2018;51:988-98

[143]

Ouyang H,Gu M.A bioresorbable dynamic pressure sensor for cardiovascular postoperative care.Adv Mater2021;33:e2102302

[144]

Huang Y,Deng H.Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities.Nat Biomed Eng2023;7:486-98

[145]

Corsi M,Mariani S.Bioresorbable nanostructured chemical sensor for monitoring of pH level in vivo.Adv Sci2022;9:e2202062 PMCID:PMC9353472

[146]

Haddad SH.Critical care management of severe traumatic brain injury in adults.Scand J Trauma Resusc Emerg Med2012;20:12 PMCID:PMC3298793

[147]

Choi YS,Yin RT.A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy.Science2022;376:1006-12

[148]

Liu Y,Le TT.Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits.Sci Transl Med2022;14:eabi7282

[149]

Yao G,Li C.A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing.Proc Natl Acad Sci U S A2021;118:e2100772118 PMCID:PMC8285966

AI Summary AI Mindmap
PDF

448

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/