2025-04-29 2022, Volume 30 Issue 2

  • Select all
  • Shiqian Chen , Kaiyun Wang , Ziwei Zhou , Yunfan Yang , Zaigang Chen , Wanming Zhai

    Wheel polygonal wear is a common and severe defect, which seriously threatens the running safety and reliability of a railway vehicle especially a locomotive. Due to non-stationary running conditions (e.g., traction and braking) of the locomotive, the passing frequencies of a polygonal wheel will exhibit time-varying behaviors, which makes it too difficult to effectively detect the wheel defect. Moreover, most existing methods only achieve qualitative fault diagnosis and they cannot accurately identify defect levels. To address these issues, this paper reports a novel quantitative method for fault detection of wheel polygonization under non-stationary conditions based on a recently proposed adaptive chirp mode decomposition (ACMD) approach. Firstly, a coarse-to-fine method based on the time–frequency ridge detection and ACMD is developed to accurately estimate a time-varying gear meshing frequency and thus obtain a wheel rotating frequency from a vibration acceleration signal of a motor. After the rotating frequency is obtained, signal resampling and order analysis techniques are applied to an acceleration signal of an axle box to identify harmonic orders related to polygonal wear. Finally, the ACMD is combined with an inertial algorithm to estimate polygonal wear amplitudes. Not only a dynamics simulation but a field test was carried out to show that the proposed method can effectively detect both harmonic orders and their amplitudes of the wheel polygonization under non-stationary conditions.

  • Chris Bosomworth , Maksym Spiryagin , Sanath Alahakoon , Colin Cole , Ben Sneath , Bruce Makin

    There currently does not exist in industry a reliable method for the detection of rail foot flaws. Like their head-based counterparts, foot flaws result in broken rail with potentially catastrophic consequences. A proposed area of research for the detection of these flaws is thermography, a non-contact method of measuring and analysing infrared emissions from an object under test. In industry, active excitation thermography is the most common, requiring an excitation source. This paper will present a temperature measurement system and a method of transient temperature extraction from the running rails for the effects of a passing train to evaluate heat transfer in the practical rail environment. The outcomes of these results will provide future direction in the development of a rail heat transfer model and determine if train passage provides enough active excitation for a thermography-based detection technique.

  • Lei Xu

    Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics. It contributes to evaluate dynamic interaction and performance between train–track system and its substructures. For the first time, this work devotes to presenting engineering practical methods for modeling and solving such large-scale train–track–substructure interaction systems from a unified viewpoint. In this study, a train consists of several multi-rigid-body vehicles, and the track is modeled by various finite elements. The track length needs only satisfy the length of a train plus boundary length at two sides, despite how long the train moves on the track. The substructures and their interaction matrices to the upper track are established as independent modules, with no need for additionally building the track structures above substructures, and accordingly saving computational cost. Track–substructure local coordinates are defined to assist the confirming of the overlapped portions between the train–track system and the substructural system to effectively combine the cyclic calculation and iterative solution procedures. The advancement of this model lies in its convenience, efficiency and accuracy in continuously considering the vibration participation of multi-types of substructures against the moving of a train on the track. Numerical examples have shown the effectiveness of this method; besides, influence of substructures on train–track dynamic behaviors is illustrated accompanied by clarifying excitation difference of different track irregularity spectrums.

  • Jou-Yi Shih , Paul Weston , Mani Entezami , Clive Roberts

    Railway switches and crossings constitute a small fraction of linear track length but consume a large proportion of the railway track system maintenance budget. While switch and crossing (S&C) faults rarely prevent trains from running, switches and crossings are the source of many faults and need continual attention. On the rare occasions when trains are prevented from running the cost of the disruption is very high. Condition monitoring of the point operating equipment that moves the switchblades has been in use for many years but condition monitoring of the state of the switch in terms of the support and mechanical damage as trains pass over has only recently started to become possible. To this end, it is important to understand the correlation between S&C faults and sensor data that can detect those faults. This paper assesses some of the data collected from multiple sensors variously positioned on and around a switch and crossing on the UK mainline for a few days of normal train operation. Accelerometers, geophones, and strain gauges were installed at the locations where they were anticipated to be most useful. Forces at the load transfer point on the crossing nose were estimated from two separate strain gauge bridges and possible use of acceleration on the crossing is discussed. Correlations between different data are analysed and assessed and correlation between peak estimated load transfer forces and accelerations is presented. Based on the analysis, conclusions are drawn about the different types of dynamic information around S&Cs that can be obtained from a variety of sensor types.

  • Zhichao Huang , Qian Su , Junjie Huang , Minqi Dong , Dong Li , Ting Liu

    Mud pumping in subgrade beds under ballastless tracks will deteriorate the dynamic performance of infrastructure under railway lines, reduce the smoothness of the railway lines, and seriously affect the comfort and safety of the trains. Due to their good mechanical properties, two-component polyurethane materials can be used for grouting to treat the fouling problems caused by ballastless track mud pumping. To develop a polyurethane formula suitable for the treatment of ballastless track mud pumping, we first performed indoor experiments to investigate the mechanical properties and gelation time of polyurethane elastomers synthesized with different raw material composition ratios, to determine an optimal composition ratio of the raw materials. Then, we conducted a dynamic field test to verify the remediation effect of the polyurethane material fabricated according to the design ratio. The results showed that polyurethane grouting material with the selected design ratios improved the contact characteristics between the surface layer of the subgrade bed and the base plate in the area, coordinating the dynamic response between the track structure and the subgrade bed. Thus, the obtained polyurethane grouting material could be used to renovate mud pumping areas of ballastless tracks with a good treatment effect.

  • Jinfeng Wu , Xiaozhen Li , C. S. Cai , Dejun Liu

    In a strong crosswind, the wake of a bridge tower will lead to an abrupt change of the aerodynamic forces acting on a vehicle passing through it, which may result in problems related to the transportation safety. This study investigates the transient aerodynamic characteristics of a high-speed train moving in a truss girder bridge and passing by a bridge tower in a wind tunnel. The scaled ratio of the train, bridge, and tower are 1:30. Effects of various parameters such as the incoming wind speed, train speed, and yaw angle on the aerodynamic performance of the train were considered. Then the sudden change mechanism of aerodynamic loads on the train when it crosses over the tower was further discussed. The results show that the bridge tower has an apparent shielding effect on the train passing through it, with the influencing width being larger than the width of the tower. The train speed is the main factor affecting the influencing width of aerodynamic coefficients, and the mutation amplitude is mainly related to the yaw angle obtained by changing the incoming wind speed or train speed. The vehicle movement introduces an asymmetry of loading on the train in the process of approaching and leaving the wake of the bridge tower, which should not be neglected.

  • Miao Li , Dinggang Gao , Tie Li , Shihui Luo , Weihua Ma , Xiaohao Chen

    The steel turnout is one of the key components in the medium–low-speed maglev line system. However, the vehicle under active control is prone to vehicle–turnout coupled vibration, and thus, it is necessary to identify the vibration characteristics of this coupled system through field tests. To this end, dynamic performance tests were conducted on a vehicle–turnout coupled system in a medium–low-speed maglev test line. Firstly, the dynamic response data of the coupled system under various operating conditions were obtained. Then, the natural vibration characteristics of the turnout were analysed using the free attenuation method and the finite element method, indicating a good agreement between the simulation results and the measured results; the acceleration response characteristics of the coupled system were analysed in detail, and the ride quality of the vehicle was assessed by Sperling index. Finally, the frequency distribution characteristics of the coupled system were discussed. All these test results could provide references for model validation and optimized design of medium–low-speed maglev transport systems.