Journal home Browse Most accessed

Most accessed

  • Select all
  • Miao Li, Dinggang Gao, Tie Li, Shihui Luo, Weihua Ma, Xiaohao Chen
    Railway Engineering Science, 2022, 30(2): 242-261. https://doi.org/10.1007/s40534-021-00266-7

    The steel turnout is one of the key components in the medium–low-speed maglev line system. However, the vehicle under active control is prone to vehicle–turnout coupled vibration, and thus, it is necessary to identify the vibration characteristics of this coupled system through field tests. To this end, dynamic performance tests were conducted on a vehicle–turnout coupled system in a medium–low-speed maglev test line. Firstly, the dynamic response data of the coupled system under various operating conditions were obtained. Then, the natural vibration characteristics of the turnout were analysed using the free attenuation method and the finite element method, indicating a good agreement between the simulation results and the measured results; the acceleration response characteristics of the coupled system were analysed in detail, and the ride quality of the vehicle was assessed by Sperling index. Finally, the frequency distribution characteristics of the coupled system were discussed. All these test results could provide references for model validation and optimized design of medium–low-speed maglev transport systems.

  • Visakh V. Krishna, Saeed Hossein-Nia, Carlos Casanueva, Sebastian Stichel, Gerald Trummer, Klaus Six
    Railway Engineering Science, 2022, 30(1): 23-40. https://doi.org/10.1007/s40534-021-00253-y

    There are several fatigue-based approaches that estimate the evolution of rolling contact fatigue (RCF) on rails over time and built to be used in tandem with multi-body simulations of vehicle dynamics. However, most of the models are not directly comparable with each other since they are based on different physical models even though they shall predict the same RCF damage at the end. This article studies different approaches to quantifying RCF and puts forward a measure for the degree of agreement between them. The methodological framework studies various steps in the RCF quantification procedure within the context of one another, identifies the ‘primary quantification step’ in each approach and compares results of the fatigue analyses. In addition to this, two quantities—‘similarity’ and ‘correlation’—have been put forward to give an indication of mutual agreement between models. Four widely used surface-based and sub-surface-based fatigue quantification approaches with varying complexities have been studied. Different operational cases corresponding to a metro vehicle operation in Austria have been considered for this study. Results showed that the best possible quantity to compare is the normalized damage increment per loading cycle coming from different approaches. Amongst the methods studied, approaches that included the load distribution step on the contact patch showed higher similarity and correlation in their results. While the different approaches might qualitatively agree on whether contact cases are ‘damaging’ due to RCF, they might not quantitatively correlate with the trends observed for damage increment values.

  • Yunguang Ye, Ping Huang, Yongxiang Zhang
    Railway Engineering Science, 2022, 30(1): 96-116. https://doi.org/10.1007/s40534-021-00252-z

    Fault detection and isolation of high-speed train suspension systems is of critical importance to guarantee train running safety. Firstly, the existing methods concerning fault detection or isolation of train suspension systems are briefly reviewed and divided into two categories, i.e., model-based and data-driven approaches. The advantages and disadvantages of these two categories of approaches are briefly summarized. Secondly, a 1D convolution network-based fault diagnostic method for high-speed train suspension systems is designed. To improve the robustness of the method, a Gaussian white noise strategy (GWN-strategy) for immunity to track irregularities and an edge sample training strategy (EST-strategy) for immunity to wheel wear are proposed. The whole network is called GWN-EST-1DCNN method. Thirdly, to show the performance of this method, a multibody dynamics simulation model of a high-speed train is built to generate the lateral acceleration of a bogie frame corresponding to different track irregularities, wheel profiles, and secondary suspension faults. The simulated signals are then inputted into the diagnostic network, and the results show the correctness and superiority of the GWN-EST-1DCNN method. Finally, the 1DCNN method is further validated using tracking data of a CRH3 train running on a high-speed railway line.

  • Qianyi Liu, Shengjie Wang, Zhongcan Li, Li Li, Jun Zhang, Chao Wen
    Railway Engineering Science, 2023, 31(1): 89-106. https://doi.org/10.1007/s40534-022-00286-x

    The delay-causing text data contain valuable information such as the specific reasons for the delay, location and time of the disturbance, which can provide an efficient support for the prediction of train delays and improve the guidance of train control efficiency. Based on the train operation data and delay-causing data of the Wuhan–Guangzhou high-speed railway, the relevant algorithms in the natural language processing field are used to process the delay-causing text data. It also integrates the  train operating-environment information and delay-causing text information so as to develop a cause-based train delay propagation prediction model. The Word2vec model is first used to vectorize the delay-causing text description after word segmentation. The mean model or the term frequency-inverse document frequency-weighted model is then used to generate the delay-causing sentence vector based on the original word vector. Afterward, the  train operating-environment features and delay-causing sentence vector are input into the extreme gradient boosting (XGBoost) regression algorithm to develop a delay propagation prediction model. In this work, 4 text feature processing methods and 8 regression algorithms are considered. The results demonstrate that the XGBoost regression algorithm has the highest prediction accuracy using the test features processed by the continuous bag of words and the mean models. Compared with the prediction model that only considers the train-operating-environment features, the results show that the prediction accuracy of the model is significantly improved with multiple regression algorithms after integrating the delay-causing feature.

  • Lei Xu, Wanming Zhai, Shengyang Zhu, Weizheng Liu
    Railway Engineering Science, 2023, 31(1): 20-36. https://doi.org/10.1007/s40534-022-00277-y

    In this work, a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train–track–substructure (TTS) system. It is called implicit-explicit integration and multi-time-step solution method (abbreviated as mI-nE-MTS method). The TTS system is divided into train–track subsystem and substructure subsystem. Considering that the root cause of low efficiency of obtaining TTS solution lies in solving the algebraic equation of the substructures, the high-efficient Zhai method, an explicit integration scheme, can be introduced to avoid matrix inversion process. The train–track system is solved by implicitly Park method. Moreover, it is known that the requirement of time step size differs for different sub-systems, integration methods and structural frequency response characteristics. A multi-time-step solution is proposed, in which time step size for the train–track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand, namely the time spent for m implicit integral steps is equal to n explicit integral steps, i.e., mI =  nE as mentioned above. The numerical examples show the accuracy, efficiency, and engineering practicality of the proposed method.

  • Yuan Gao, Ping Wang, Kai Wang, Jingmang Xu, Zhiguo Dong
    Railway Engineering Science, 2021, 29(1): 59-73. https://doi.org/10.1007/s40534-020-00226-7

    Broken gap is an extremely dangerous state in the service of high-speed rails, and the violent wheel–rail impact forces will be intensified when a vehicle passes the gap at high speeds, which may cause a secondary fracture to rail and threaten the running safety of the vehicle. To recognize the damage tolerance of rail fracture length, the implicit–explicit sequential approach is adopted to simulate the wheel–rail high-frequency impact, which considers the factors such as the coupling effect between frictional contact and structural vibration, nonlinear material and real geometric profile. The results demonstrate that the plastic deformation and stress are distributed in crescent shape during the impact at the back rail end, increasing with the rail fracture length. The axle box acceleration in the frequency domain displays two characteristic modes with frequencies around 1,637 and 404 Hz. The limit of the rail fracture length is 60 mm for high-speed railway at a speed of 250 km/h.

  • Zhihui Zhu, Yongjiu Tang, Zhenning Ba, Kun Wang, Wei Gong
    Railway Engineering Science, 2022, 30(1): 57-70. https://doi.org/10.1007/s40534-021-00262-x

    To explore the effect of canyon topography on the seismic response of railway irregular bridge–track system that crosses a V-shaped canyon, seismic ground motions of the horizontal site and V-shaped canyon site were simulated through theoretical analysis with 12 earthquake records selected from the Pacific Earthquake Engineering Research Center (PEER) Strong Ground Motion Database matching the site condition of the bridge. Nonlinear seismic response analyses of an existing 11-span irregular simply supported railway bridge–track system were performed under the simulated spatially varying ground motions. The effects of the V-shaped canyon topography on the peak ground acceleration at bridge foundations and seismic responses of the bridge–track system were analyzed. Comparisons between the results of horizontal and V-shaped canyon sites show that the top relative displacement between adjacent piers at the junction of the incident side and the back side of the V-shaped site is almost two times that of the horizontal site, which also determines the seismic response of the fastener. The maximum displacement of the fastener occurs in the V-shaped canyon site and is 1.4 times larger than that in the horizontal site. Neglecting the effect of V-shaped canyon leads to the inappropriate assessment of the maximum seismic response of the irregular high-speed railway bridge–track system. Moreover, engineers should focus on the girder end to the left or right of the two fasteners within the distance of track seismic damage.

  • Nan Zhang, Ziji Zhou, Zhaozhi Wu
    Railway Engineering Science, 2022, 30(1): 41-56. https://doi.org/10.1007/s40534-021-00259-6

    A method for analysing the vehicle–bridge interaction system with enhanced objectivity is proposed in the paper, which considers the time-variant and random characteristics and allows finding the power spectral densities (PSDs) of the system responses directly from the PSD of track irregularity. The pseudo-excitation method is adopted in the proposed framework, where the vehicle is modelled as a rigid body and the bridge is modelled using the finite element method. The vertical and lateral wheel–rail pseudo-excitations are established assuming the wheel and rail have the same displacement and using the simplified Kalker creep theory, respectively. The power spectrum function of vehicle and bridge responses is calculated by history integral. Based on the dynamic responses from the deterministic and random analyses of the interaction system, and the probability density functions for three safety factors (derailment coefficient, wheel unloading rate, and lateral wheel axle force) are obtained, and the probabilities of the safety factors exceeding the given limits are calculated. The proposed method is validated by Monte Carlo simulations using a case study of a high-speed train running over a bridge with five simply supported spans and four piers.

  • Zhiyuan Dai, Tian Li, Ning Zhou, Jiye Zhang, Weihua Zhang
    Railway Engineering Science, 2022, 30(1): 117-128. https://doi.org/10.1007/s40534-021-00258-7

    Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent, and their magnitudes do not satisfy the corresponding standard, the aerodynamic uplift forces of pantographs with baffles are numerically investigated, and an optimization method to determine the baffle angle is proposed. First, the error between the aerodynamic resistances of the pantograph obtained by numerical simulation and wind tunnel test is less than 5%, which indicates the accuracy of the numerical simulation method. Second, the original pantograph and pantographs equipped with three different baffles are numerically simulated to obtain the aerodynamic forces and moments of the pantograph components. Three different angles for the baffles are −17°, 0° and 17°. Then the multibody simulation is used to calculate the aerodynamic uplift force of the pantograph, and the optimal range for the baffle angle is determined. Results show that the lift force of the baffle increases with the increment of the angle in the knuckle-downstream condition, whereas the lift force of the baffle decreases with the increment of the angle in the knuckle-upstream condition. According to the results of the aerodynamic uplift force, the optimal angle of the baffle is determined to be 4.75° when the running speed is 350 km/h, and pantograph–catenary contact forces are 128.89 N and 129.15 N under the knuckle-downstream and knuckle-upstream operating conditions, respectively, which are almost equal and both meet the requirements of the standard EN50367:2012.

  • Xin Ge, Qinghua Chen, Liang Ling, Wanming Zhai, Kaiyun Wang
    Railway Engineering Science, 2023, 31(2): 122-134. https://doi.org/10.1007/s40534-022-00291-0

    Air brake systems are critical equipment for railway trains, which affects the running safety of the trains significantly. To study air braking characteristics of long freight trains, an approach for simulating air brake systems based on fluid dynamics theory was proposed. The structures and working mechanisms of locomotive and wagon air brakes are introduced, and mathematical models of the pipes, brake valves, reservoirs or chambers, cylinders, etc., are presented. Besides, the dynamic motions of parts in the main valve are considered. The simulation model of the whole air brake system is then formulated, and the solving method based on the finite-difference method is used. New efficient pipe boundary conditions without iterations are developed for brake pipes and branch pipes, which can achieve higher computational efficiency. The proposed approach for simulating the air brake system is validated by comparing with published measured data. Simulation results of different train formations indicate that models that consider the dynamic behavior of brake pipes are recommended for predicting the characteristics of long trains under service braking conditions.

  • Hans True, Lasse Engbo Christiansen, Andreas Lindhardt Plesner, Andreas Lønstrup Ammitzbøll, Bjørn Jerram Dahl
    Railway Engineering Science, 2023, 31(1): 1-19. https://doi.org/10.1007/s40534-022-00288-9

    We investigate numerically the dynamical reactions of a moving wheelset model to real measured track irregularities. The background is to examine whether the dynamics are suitable as the input to the inverse problem: determine the true track geometry from measured wheelset dynamical reactions. It is known that the method works well for the vertical position of the rails but the computed lateral position is often flawed. We find that the lateral motion of the wheelset often may differ from the track geometry. The cases are investigated closely but the reasons remain unknown. While the wheelset dynamics reflect the larger (> 4–6 mm) aperiodic track disturbances and single large disturbances quite well, this does not seem to be the case for general smaller or periodic track irregularities or sections behind single large disturbances. The resulting dynamics of a wheelset to lateral track irregularities are in general not sufficiently accurate to be used as the basis for a description of the track irregularities.

  • António Gomes Correia, Ana Ramos
    Railway Engineering Science, 2022, 30(3): 323-359. https://doi.org/10.1007/s40534-021-00260-z

    The type of subgrade of a railroad foundation is vital to the overall performance of the track structure. With the train speed and tonnage increase, as well as environmental changes, the evaluation and influence of subgrade are even more paramount in the railroad track structure performance. A geomechanics classification for subgrade is proposed coupling the stiffness (resilient modulus) and permanent deformation behaviour evaluated by means of repeated triaxial loading tests. This classification covers from fine- to coarse-grained soils, grouped by UIC and ASTM. For this achievement, we first summarize the main models for estimating resilient modulus and permanent deformation, including the evaluation of their robustness and their sensitivity to mechanical and environmental parameters. This is followed by the procedure required to arrive at the geomechanical classification and rating, as well as a discussion of the influence of environmental factors. This work is the first attempt to obtain a new geomechanical classification that can be a useful tool in the evaluation and modelling of the foundation of railway structures.

  • Qingzhi Ye, Qiang Luo, Guishuai Feng, Tengfei Wang, Hongwei Xie
    Railway Engineering Science, 2023, 31(1): 61-74. https://doi.org/10.1007/s40534-022-00287-w

    Stress concentration occurs in the foundations of railway tracks where discontinuous components are located. The exacerbated stress under the expansion joints in slab tracks may trigger foundation failures such as mud pumping. Although the higher stress due to the discontinuities of track structures has been discussed in past studies, few focused on the stress response of roadbeds in slab tracks and quantitatively characterized the stress pattern. In this paper, we performed a dynamic finite element analysis of a track-formation system, incorporating expansion joints as primary longitudinal discontinuities. The configurations of CRTS III slab tracks and the contact conditions between concrete layers were considered. Numerical results show that longitudinal influencing length of induced stress on roadbed under wheel load relates to the contact conditions between concrete layers, increasing nonlinearly at a larger coefficient of friction. Given a measured coefficient of friction of 0.7, the calculated longitudinal influencing length (9.0 m) matches with field data. The longitudinal influencing length is not affected with the increasing velocity. As stress concentration arises with expansion joints, the worst-case scenario emerges when double-axle loads are exerted immediately above the expansion joints between concrete bases. A stress concentration factor C v on the roadbed is proposed; it increases with the increasing velocity, changing from 1.33 to 1.52 at velocities between 5 and 400 km/h. The stress distribution on roadbeds transforms from a trapezoid pattern at continuous sections to a triangle pattern at points with longitudinal discontinuities. An explicit expression is finally proposed for the stress pattern on roadbed under expansion joints. Although structural discontinuities induce stress raiser, the extent of concentration is mitigated with increasing depth at different velocity levels.

  • Xiaohong Huang, Hanlin Wang, Qunzhan Li, Naiqi Yang, Tao Ren, You Peng, Haoyang Li
    Railway Engineering Science, 2023, 31(1): 75-88. https://doi.org/10.1007/s40534-022-00290-1

    A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit. With the application of two-stage three-phase continuous power supply structure, the electrical characteristics exhibit new features differing from the existing traction system. In this work, the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive. The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses. Based on the chain network model of the traction network, a simulation model is established to analyze the electrical characteristics such as traction current distribution, voltage losses, system equivalent impedance, voltage distribution, voltage unbalance and regenerative energy utilization. In a few words, quite a lot traction current of about 99% is undertaken by long-section cable network. The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure, and the voltage unbalance caused by impedance asymmetry of traction network is less than 1‰. In addition, the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%.

  • Yu Hou, Xi Wang, Shouguang Sun, Hongbo Que, Rubing Guo, Xinhai Lin, Siqin Jin, Chengpan Wu, Yue Zhou, Xiaolong Liu
    Railway Engineering Science, 2023, 31(1): 37-51. https://doi.org/10.1007/s40534-022-00282-1

    The load spectrum is a crucial factor for assessing the fatigue reliability of in-service rolling element bearings in transmission systems. For a bearing in a high-speed train gearbox, a measurement technique based on strain detection of bearing outer ring was used to instrument the bearing and determine the time histories of the distributed load in the bearing under different gear meshing conditions. Accordingly, the load spectrum of the total radial load carried by the bearing was compiled. The mean value and class interval of the obtained load spectrum were found to vary non-monotonously with the speed and torque of gear meshing, which was considered to be caused by the vibration of the shaft and the bearing cage. As the realistic service load input of bearing life assessment, the measured load spectrum under different gear meshing conditions can be used to predict gearbox bearing life realistically based on the damage-equivalent principle and actual operating conditions.