Protein Cell All Journals

Jan 2019, Volume 10 Issue 2

  • Select all
  • RECOLLECTION
    Ke Hsin Kuo: A distinguished scientist and great mentor
    Da-Neng Wang, Lu-Chang Qin
  • RESEARCH ARTICLE
    Transcriptional mechanism of IRF8 and PU.1 governs microglial activation in neurodegenerative condition
    Nan Zhou, Kaili Liu, Yue Sun, Ying Cao, Jing Yang

    Microglial activation occurs in divergent neuropathological conditions. Such microglial event has the key involvement in the progression of CNS diseases. However, the transcriptional mechanism governing microglial activation remains poorly understood. Here, we investigate the microglial response to traumatic injuryinduced neurodegeneration by the 3D fluorescence imaging technique. We show that transcription factors IRF8 and PU.1 are both indispensible for microglial activation, as their specific post-developmental deletion in microglia abolishes the process. Mechanistically, we reveal that IRF8 and PU.1 directly target the gene transcription of each other in a positive feedback to sustain their highly enhanced expression during microglial activation. Moreover, IRF8 and PU.1 dictate the microglial response by cooperatively acting through the composite IRF-ETS motifs that are specifically enriched on microglial activation-related genes. This action of cooperative transcription can be further verified biochemically by the synergetic binding of IRF8 and PU.1 proteins to the composite-motif DNA. Our study has therefore elucidated the central transcriptional mechanism of microglial activation in response to neurodegenerative condition.

  • RESEARCH ARTICLE
    TMEM43-S358L mutation enhances NF-κBTGFβ signal cascade in arrhythmogenic right ventricular dysplasia/cardiomyopathy
    Guoxing Zheng, Changying Jiang, Yulin Li, Dandan Yang, Youcai Ma, Bing Zhang, Xuan Li, Pei Zhang, Xiaoyu Hu, Xueqiang Zhao, Jie Du, Xin Lin

    Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is a genetic cardiac muscle disease that accounts for approximately 30% sudden cardiac death in young adults. The Ser358Leu mutation of transmembrane protein 43 (TMEM43) was commonly identified in the patients of highly lethal and fully penetrant ARVD subtype, ARVD5. Here, we generated TMEM43 S358L mouse to explore the underlying mechanism. This mouse strain showed the classic pathologies of ARVD patients, including structural abnormalities and cardiac fibrofatty. TMEM43 S358L mutation led to hyper-activated nuclear factor κB (NF-κB) activation in heart tissues and primary cardiomyocyte cells. Importantly, this hyper activation of NF-κB directly drove the expression of pro-fibrotic gene, transforming growth factor beta (TGFβ1), and enhanced downstream signal, indicating that TMEM43 S358L mutation up-regulates NF-κB-TGFβ signal cascade during ARVD cardiac fibrosis. Our study partially reveals the regulatory mechanism of ARVD development.

  • RESEARCH ARTICLE
    Cryo-EM structure of an early precursor of large ribosomal subunit reveals a half-assembled intermediate
    Dejian Zhou, Xing Zhu, Sanduo Zheng, Dan Tan, Meng-Qiu Dong, Keqiong Ye

    Assembly of eukaryotic ribosome is a complicated and dynamic process that involves a series of intermediates. It is unknown how the highly intertwined structure of 60S large ribosomal subunits is established. Here, we report the structure of an early nucleolar pre-60S ribosome determined by cryo-electron microscopy at 3.7 Å resolution, revealing a half-assembled subunit. Domains I, II and VI of 25S/5.8S rRNA pack tightly into a native-like substructure, but domains III, IV and V are not assembled. The structure contains 12 assembly factors and 19 ribosomal proteins, many of which are required for early processing of large subunit rRNA. The Brx1-Ebp2 complex would interfere with the assembly of domains IV and V. Rpf1, Mak16, Nsa1 and Rrp1 form a cluster that consolidates the joining of domains I and II. Our structure reveals a key intermediate on the path to establishing the global architecture of 60S subunits.

  • LETTER
    Structural basis of AimP signaling molecule recognition by AimR in Spbeta group of bacteriophages
    Xiangkai Zhen, Huan Zhou, We Ding, Biao Zhou, Xiaolong Xu, Vanja Perčulija, Chun-Jung Chen, Ming-Xian Chang, Muhammad Iqbal Choudhary, Songying Ouyang
  • LETTER
    Structure-activity relationship optimization for lassa virus fusion inhibitors targeting the transmembrane domain of GP2
    Guangshun Zhang, Junyuan Cao, Yan Cai, Yang Liu, Yanli Li, Peilin Wang, Jiao Guo, Xiaoying Jia, Mengmeng Zhang, Gengfu Xiao, Yu Guo, Wei Wang
  • LETTER
    Down-regulation of the let-7i facilitates gastric cancer invasion and metastasis by targeting COL1A1
    Yue Shi, Zipeng Duan, Xun Zhang, Xiaotian Zhang, Guoqing Wang, Fan Li
  • LETTER
    The structure differences of Japanese encephalitis virus SA14 and SA14-14-2 E proteins elucidate the virulence attenuation mechanism
    Xinyu Liu, Xin Zhao, Rui Na, Lili Li, Eberhard Warkentin, Jennifer Witt, Xu Lu, Yongxin Yu, Yuquan Wei, Guohong Peng, Yuhua Li, Junzhi Wang
  • CORRECTION
    Efficient derivation of extended pluripotent stem cells from NOD-scid Il2rg−/−mice
    Yaqin Du, Ting Wang, Jun Xu, Chaoran Zhao, Haibo Li, Yao Fu, Yaxing Xu, Liangfu Xie, Jingru Zhao, Weifeng Yang, Ming Yin, Jinhua Wen, Hongkui Deng