Feb 2019, Volume 10 Issue 3
    

  • Select all
  • RECOLLECTION
    Wei Chen, Xi Chen, Shengjun Wen
  • RESEARCH ARTICLE
    Wei Shao, Shasha Li, Lu Li, Kequan Lin, Xinhong Liu, Haiyan Wang, Huili Wang, Dong Wang

    Metastasis is the leading cause of human cancer deaths. Unfortunately, no approved drugs are available for antimetastatic treatment. In our study, high-throughput sequencing-based high-throughput screening (HTS2) and a breast cancer lung metastasis (BCLM)-associated gene signature were combined to discover anti-metastatic drugs. After screening of thousands of compounds, we identified Ponatinib as a BCLM inhibitor. Ponatinib significantly inhibited the migration and mammosphere formation of breast cancer cells in vitro and blocked BCLM in multiple mouse models. Mechanistically, Ponatinib represses the expression of BCLM-associated genes mainly through the ERK/c-Jun signaling pathway by inhibiting the transcription of JUN and accelerating the degradation of c-Jun protein. Notably, JUN expression levels were positively correlated with BCLM-associated gene expression and lung metastases in breast cancer patients. Collectively, we established a novel approach for the discovery of anti-metastatic drugs, identified Ponatinib as a new drug to inhibit BCLM and revealed c-Jun as a crucial factor and potential drug target for BCLM. Our study may facilitate the therapeutic treatment of BCLM as well as other metastases.

  • RESEARCH ARTICLE
    Lin Cao, Jizheng Chen, Yaxin Wang, Yuting Yang, Jie Qing, Zihe Rao, Xinwen Chen, Zhiyong Lou

    Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. Although several HCV protease/polymerase inhibitors were recently approved by U.S. FDA, the combination of antivirals targeting multiple processes of HCV lifecycle would optimize anti-HCV therapy and against potential drug-resistance. Viral entry is an essential target step for antiviral development, but FDA-approved HCV entry inhibitor remains exclusive. Here we identify serotonin 2A receptor (5-HT2AR) is a HCV entry factor amendable to therapeutic intervention by a chemical biology strategy. The silencing of 5-HT2AR and clinically available 5-HT2AR antagonist suppress cell culture-derived HCV (HCVcc) in different liver cells and primary human hepatocytes at late endocytosis process. The mechanism is related to regulate the correct plasma membrane localization of claudin 1 (CLDN1). Moreover, phenoxybenzamine (PBZ), an FDAapproved 5-HT2AR antagonist, inhibits all major HCV genotypes in vitro and displays synergy in combination with clinical used anti-HCV drugs. The impact of PBZ on HCV genotype 2a is documented in immune-competent humanized transgenic mice. Our results not only expand the understanding of HCV entry, but also present a promising target for the invention of HCV entry inhibitor.

  • RESEARCH ARTICLE
    Yali Jiang, Yuanyuan Wang, Pengfei Ma, Dongjie An, Junlong Zhao, Shiqian Liang, Yuchen Ye, Yingying Lu, Peng Zhang, Xiaowei Liu, Hua Han, Hongyan Qin

    Macrophages play critical roles in renal fibrosis. However, macrophages exhibit ontogenic and functional heterogeneities, and which population of macrophages contributes to renal fibrosis and the underlying mechanisms remain unclear. In this study, we genetically targeted Notch signaling by disrupting the transcription factor recombination signal binding protein-Jκ (RBP-J), to reveal its role in regulation of macrophages during the unilateral ureteral obstruction (UUO)-induced murine renal fibrosis. Myeloid-specific disruption of RBP-J attenuated renal fibrosis with reduced extracellular matrix deposition and myofibroblast activation, as well as attenuated epithelial-mesenchymal transition, likely owing to the reduced expression of TGF-β. Meanwhile, RBP-J deletion significantly hampered macrophage infiltration and activation in fibrotic kidney, although their proliferation appeared unaltered. By using macrophage clearance experiment, we found that kidney resident macrophages made negligible contribution, but bone marrow (BM)-derived macrophages played a major role in renal fibrogenesis. Further mechanistic analyses showed that Notch blockade reduced monocyte emigration from BM by down-regulating CCR2 expression. Finally, we found that myeloid-specific Notch activation aggravated renal fibrosis, which was mediated by CCR2+ macrophages infiltration. In summary, our data have unveiled that myeloid-specific targeting of Notch could ameliorate renal fibrosis by regulating BM-derived macrophages recruitment and activation, providing a novel strategy for intervention of this disease.

  • LETTER
    Qing-Yan Guo, Long-Hua Zhang, Chao Zuo, Dong-Liang Huang, Zhipeng A. Wang, Ji-Shen Zheng, Chang-Lin Tian
  • LETTER
    Guanrong Yan, Ruibin Yan, Cheng Chen, Cheng Chen, Yanqiu Zhao, Wei Qin, Matthew B. Veldman, Song Li, Shuo Lin
  • LETTER
    Wei Mu, Yongping Zhang, Xutong Xue, Lei Liu, Xiaofei Wei, Haoyi Wang
  • LETTER
    Dongqing Jiang, Xiannian Zhang, Yuhong Pang, Jianyun Zhang, Jianbin Wang, Yanyi Huang