5′ capped and 3′ polyA-tailed sgRNAs enhance the efficiency of CRISPR-Cas9 system

Wei Mu, Yongping Zhang, Xutong Xue, Lei Liu, Xiaofei Wei, Haoyi Wang

PDF(683 KB)
PDF(683 KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (3) : 223-228. DOI: 10.1007/s13238-018-0552-5
LETTER
LETTER

5′ capped and 3′ polyA-tailed sgRNAs enhance the efficiency of CRISPR-Cas9 system

Author information +
History +

Cite this article

Download citation ▾
Wei Mu, Yongping Zhang, Xutong Xue, Lei Liu, Xiaofei Wei, Haoyi Wang. 5′ capped and 3′ polyA-tailed sgRNAs enhance the efficiency of CRISPR-Cas9 system. Protein Cell, 2019, 10(3): 223‒228 https://doi.org/10.1007/s13238-018-0552-5

References

[1]
Bergman N, Moraes KCM, Anderson JR, Zaric B, Kambach C, Schneider RJ, Wilusz CJ, Wilusz J (2007) Lsm proteins bind and stabilize RNAs containing 5′ poly(A) tracts . Nat Struct Mol Biol 14:824–831
CrossRef Google scholar
[2]
Chapman EG, Moon SL, Wilusz J, Kieft JS (2014) RNA structures that resist degradation by Xrn1 produce a pathogenic Dengue virus RNA . eLife 3:e01892
CrossRef Google scholar
[3]
Cheng AW, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H (2016) Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling . Cell Res 26:254
CrossRef Google scholar
[4]
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems . Science 339:819–823
CrossRef Google scholar
[5]
Deleavey Glen F, Damha Masad J (2012) Designing chemically modified oligonucleotides for targeted gene silencing . Chem Biol 19:937–954
CrossRef Google scholar
[6]
Eckstein F (2014) Phosphorothioates, essential components of therapeutic oligonucleotides . Nucleic Acid Ther 24:374–387
CrossRef Google scholar
[7]
Gilbert Luke A, Larson Matthew H, Morsut L, Liu Z, Brar Gloria A, Torres Sandra E, Stern-Ginossar N, Brandman O, Whitehead Evan H, Doudna Jennifer A (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes . Cell 154:442–451
CrossRef Google scholar
[8]
Gilbert Luke A, Horlbeck Max A, Adamson B, Villalta Jacqueline E, Chen Y, Whitehead Evan H, Guimaraes C, Panning B, Ploegh Hidde L, Bassik Michael C (2014) Genome-scale CRISPRmediated control of gene repression and activation . Cell 159:647–661
CrossRef Google scholar
[9]
Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells . Nat Biotechnol 33:985
CrossRef Google scholar
[10]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity . Science 337:816–821
CrossRef Google scholar
[11]
Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H (2014) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex . Nature 517:583
CrossRef Google scholar
[12]
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9 . Science 339:823–826
CrossRef Google scholar
[13]
Rahdar M, McMahon MA, Prakash TP, Swayze EE, Bennett CF, Cleveland DW (2015) Synthetic CRISPR RNA-Cas9–guided genome editing in human cells . Proc Natl Acad Sci USA 112: E7110–E7117
CrossRef Google scholar
[14]
Shechner DM, Hacisuleyman E, Younger ST, Rinn JL (2015) Multiplexable, locus-specific targeting of long RNAs with CRISPR-display . Nat Methods 12:664–670
CrossRef Google scholar
[15]
Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems . Curr Opin Microbiol 14:321–327
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 The Author(s) 2018
AI Summary AI Mindmap
PDF(683 KB)

Accesses

Citations

Detail

Sections
Recommended

/