Terminal transfer amplification and sequencing for high-efficiency and lowbias copy number profiling of fragmented DNA samples

Dongqing Jiang , Xiannian Zhang , Yuhong Pang , Jianyun Zhang , Jianbin Wang , Yanyi Huang

Protein Cell ›› 2019, Vol. 10 ›› Issue (3) : 229 -233.

PDF (1673KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (3) : 229 -233. DOI: 10.1007/s13238-018-0540-9
LETTER
LETTER

Terminal transfer amplification and sequencing for high-efficiency and lowbias copy number profiling of fragmented DNA samples

Author information +
History +
PDF (1673KB)

Cite this article

Download citation ▾
Dongqing Jiang, Xiannian Zhang, Yuhong Pang, Jianyun Zhang, Jianbin Wang, Yanyi Huang. Terminal transfer amplification and sequencing for high-efficiency and lowbias copy number profiling of fragmented DNA samples. Protein Cell, 2019, 10(3): 229-233 DOI:10.1007/s13238-018-0540-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao L, Zhou Y, Huang L, Dong S, Ma Y (2017) Development of a dual-expression vector facilitated with selection-free PCR recombination cloning strategy . AMB Express 7:1–7

[2]

Chen C, Xing D, Tan L, Li H, Zhou G (2017) Single-cell wholegenome analyses by linear amplification via transposon insertion (LIANTI) . Science 356:189–194

[3]

Dai SM, Chen HH, Chang C, Riggs AD, Flanagan SD (2000) Ligation-mediated PCR for quantitative in vivo footprinting . Nat Biotechnol 18:1108–1111

[4]

Do H, Dobrovic A (2012) Dramatic reduction of sequence artifacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil-DNA glycosylase . Oncotarget 3:546–558

[5]

Fu Y, Li C, Lu S, Zhou W, Tang F (2015) Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc . Natl. Acad. Sci. USA 112:11923–11928

[6]

Liu CL, Bernstein BE, Schreiber SL (2008) Whole genome amplification by T7-based linear amplification of DNA (TLAD): overview . Cold Spring Harb Protoc 3:42

[7]

Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP (2007) Nanoliter reactors improve multiple displacement amplification of genomes from single cells . PLoS Genet . 3:1702–1708

[8]

McConnell MJ, Lindberg MR, Brennand KJ, Julia C, Voet T (2013) Mosaic copy number variation in human neurons . Science 342:632–637

[9]

Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells . Nat Methods 10:1096–1098

[10]

Shankaranarayanan P, Mendoza-Parra M (2011) Single-tube linear DNA amplification (LinDA) for robust ChIP-seq . Nat Methods 8:565–568

[11]

Sikkema-Raddatz B, Johansson LF, de Boer EN, Almomani R, Boven LG (2013) Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics . Hum Mutat 34:1035–1042

[12]

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C (2009) mRNA-Seq whole-transcriptome analysis of a single cell . Nat Methods 6:377–382

[13]

Treff NR, Fedick A, Tao X, Devkota B, Taylor D, Scott RT (2013) Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease . Fertil Steril 99:1377–1384

[14]

Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C (2015) Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study . Lancet Infect Dis 15:1193–1202

[15]

Zhou ZX, Zhang MJ, Peng X, Takayama Y, Xu XY (2013) Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method . Genome Res 23:705–715

RIGHTS & PERMISSIONS

The Author(s) 2018

AI Summary AI Mindmap
PDF (1673KB)

Supplementary files

PAC-0229-18068-HYY_suppl_1

577

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/