Terminal transfer amplification and sequencing for high-efficiency and lowbias copy number profiling of fragmented DNA samples

Dongqing Jiang, Xiannian Zhang, Yuhong Pang, Jianyun Zhang, Jianbin Wang, Yanyi Huang

PDF(1673 KB)
PDF(1673 KB)
Protein Cell ›› 2019, Vol. 10 ›› Issue (3) : 229-233. DOI: 10.1007/s13238-018-0540-9
LETTER
LETTER

Terminal transfer amplification and sequencing for high-efficiency and lowbias copy number profiling of fragmented DNA samples

Author information +
History +

Cite this article

Download citation ▾
Dongqing Jiang, Xiannian Zhang, Yuhong Pang, Jianyun Zhang, Jianbin Wang, Yanyi Huang. Terminal transfer amplification and sequencing for high-efficiency and lowbias copy number profiling of fragmented DNA samples. Protein Cell, 2019, 10(3): 229‒233 https://doi.org/10.1007/s13238-018-0540-9

References

[1]
Cao L, Zhou Y, Huang L, Dong S, Ma Y (2017) Development of a dual-expression vector facilitated with selection-free PCR recombination cloning strategy . AMB Express 7:1–7
CrossRef Google scholar
[2]
Chen C, Xing D, Tan L, Li H, Zhou G (2017) Single-cell wholegenome analyses by linear amplification via transposon insertion (LIANTI) . Science 356:189–194
CrossRef Google scholar
[3]
Dai SM, Chen HH, Chang C, Riggs AD, Flanagan SD (2000) Ligation-mediated PCR for quantitative in vivo footprinting . Nat Biotechnol 18:1108–1111
CrossRef Google scholar
[4]
Do H, Dobrovic A (2012) Dramatic reduction of sequence artifacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil-DNA glycosylase . Oncotarget 3:546–558
CrossRef Google scholar
[5]
Fu Y, Li C, Lu S, Zhou W, Tang F (2015) Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc . Natl. Acad. Sci. USA 112:11923–11928
CrossRef Google scholar
[6]
Liu CL, Bernstein BE, Schreiber SL (2008) Whole genome amplification by T7-based linear amplification of DNA (TLAD): overview . Cold Spring Harb Protoc 3:42
CrossRef Google scholar
[7]
Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP (2007) Nanoliter reactors improve multiple displacement amplification of genomes from single cells . PLoS Genet . 3:1702–1708
CrossRef Google scholar
[8]
McConnell MJ, Lindberg MR, Brennand KJ, Julia C, Voet T (2013) Mosaic copy number variation in human neurons . Science 342:632–637
CrossRef Google scholar
[9]
Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells . Nat Methods 10:1096–1098
CrossRef Google scholar
[10]
Shankaranarayanan P, Mendoza-Parra M (2011) Single-tube linear DNA amplification (LinDA) for robust ChIP-seq . Nat Methods 8:565–568
CrossRef Google scholar
[11]
Sikkema-Raddatz B, Johansson LF, de Boer EN, Almomani R, Boven LG (2013) Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics . Hum Mutat 34:1035–1042
CrossRef Google scholar
[12]
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C (2009) mRNA-Seq whole-transcriptome analysis of a single cell . Nat Methods 6:377–382
CrossRef Google scholar
[13]
Treff NR, Fedick A, Tao X, Devkota B, Taylor D, Scott RT (2013) Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease . Fertil Steril 99:1377–1384
CrossRef Google scholar
[14]
Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C (2015) Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study . Lancet Infect Dis 15:1193–1202
CrossRef Google scholar
[15]
Zhou ZX, Zhang MJ, Peng X, Takayama Y, Xu XY (2013) Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method . Genome Res 23:705–715
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 The Author(s) 2018
AI Summary AI Mindmap
PDF(1673 KB)

Accesses

Citations

Detail

Sections
Recommended

/