For many psychiatric and other traits, diagnoses are based on a number of different criteria or phenotypes. Rather than carrying out genetic analyses on the final diagnosis, it has been suggested that relevant phenotypes should be analyzed directly. We provide an overview of statistical methods for the joint analysis of multiple phenotypes in case-control association studies.
Mammalian target of rapamycin complex 2 (mTORC2) is a key downstream mediator of phosphoinositol-3-kinase (PI3K) dependent growth factor signaling. In lymphocytes, mTORC2 has emerged as an important regulator of cell development, homeostasis and immune responses. However, our current understanding of mTORC2 functions and the molecular mechanisms regulating mTORC2 signaling in B and T cells are still largely incomplete. Recent studies have begun to shed light on this important pathway. We have previously reported that mTORC2 mediates growth factor dependent phosphorylation of Akt and facilitates Akt dependent phosphorylation and inactivation of transcription factors FoxO1 and FoxO3a. We have recently explored the functions of mTORC2 in B cells and show that mTORC2 plays a key role in regulating survival and immunoglobulin (Ig) gene recombination of bone marrow B cells through an Akt2-FoxO1 dependent mechanism. Ig recombination is suppressed in proliferating B cells to ensure that DNA double strand breaks are not generated in actively dividing cells. Our results raise the possibility that genetic or pharmacologic inhibition of mTORC2 may promote B cell tumor development as a result of inefficient suppression of Ig recombination in dividing B cells. We also propose a novel strategy to treat cancers based on our recent discovery that mTORC2 regulates Akt protein stability.
Sequential activation of cyclin-dependent kinases (Cdks) controls mammalian cell cycle. Here we demonstrate that the upregulation of cyclin-dependent kinase 2 (Cdk2) activity coincides with the loss of mitochondrial membrane potential (MMP) in paclitaxel-induced apoptosis. Ectopic expression of the dominant negative Cdk2 (Cdk2-dn) and a specific Cdk2 inhibitor, p21
Alzheimer’s disease (AD) pathogenesis is characterized by senile plaques in the brain and evidence of oxidative damage. Oxidative stress may precede plaque formation in AD; however, the link between oxidative damage and plaque formation remains unknown. Presenilins are transmembrane proteins in which mutations lead to accelerated plaque formation and early-onset familial Alzheimer’s disease. Presenilins physically interact with two antioxidant enzymes thiol-specific antioxidant (TSA) and proliferation-associated gene (PAG) of the peroxiredoxin family. The functional consequences of these interactions are unclear. In the current study we expressed a presenilin transgene in
The responses of macrophages to
We have previously described a novel artificial NFEV β-secretase (BACE1) cleavage site, which when introduced into the amyloid-β precursor protein (APP), significantly enhances APP cleavage by BACE1 in
Mounting evidence has demonstrated that CD4+ T cells play an important role in anti-tumor immune responses. Thus, adoptive transfer of these cells may have great potential for anti-cancer therapy. However, due to the difficulty to generate sufficient tumor-specific CD4+ T cells, the use of CD4+ T cells in tumor therapy is limited. It has been found that IL-15 transfection enhances the proliferation and anti-tumor activity of tumor-specific CD8+ T cells, but the effect of IL-15 transfection on CD4+ T cells remains unknown. Here, the effects of retrovirus-mediated IL-15 expression in Ova-specific CD4+ T cells from Do11.10 mice were evaluated and it was discovered that IL-15 transfected CD4+ T cells expressed both soluble and membrane-bound IL-15. Retrovirus-mediated IL-15 expression led to a selective expansion of antigen-specific CD4+ T cells by inhibiting their apoptosis.