Antioxidant proteins TSA and PAG interact synergistically with Presenilin to modulate Notch signaling in Drosophila

Michael F. Wangler1,2, Lawrence T. Reiter1,3, Georgianna Zimm1, Jennifer Trimble-Morgan1,4, Jane Wu5, Ethan Bier1()

PDF(644 KB)
PDF(644 KB)
Protein Cell ›› 2011, Vol. 2 ›› Issue (7) : 554-563. DOI: 10.1007/s13238-011-1073-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Antioxidant proteins TSA and PAG interact synergistically with Presenilin to modulate Notch signaling in Drosophila

  • Michael F. Wangler1,2, Lawrence T. Reiter1,3, Georgianna Zimm1, Jennifer Trimble-Morgan1,4, Jane Wu5, Ethan Bier1()
Author information +
History +

Abstract

Alzheimer’s disease (AD) pathogenesis is characterized by senile plaques in the brain and evidence of oxidative damage. Oxidative stress may precede plaque formation in AD; however, the link between oxidative damage and plaque formation remains unknown. Presenilins are transmembrane proteins in which mutations lead to accelerated plaque formation and early-onset familial Alzheimer’s disease. Presenilins physically interact with two antioxidant enzymes thiol-specific antioxidant (TSA) and proliferation-associated gene (PAG) of the peroxiredoxin family. The functional consequences of these interactions are unclear. In the current study we expressed a presenilin transgene in Drosophila wing and sensory organ precursors of the fly. This caused phenotypes typical of Notch signaling loss-of-function mutations. We found that while expression of TSA or PAG alone produced no phenotype, co-expression of TSA and PAG with presenilin led to an enhanced Notch loss-of-function phenotype. This phenotype was more severe and more penetrant than that caused by the expression of Psn alone. In order to determine whether these phenotypes were indeed affecting Notch signaling, this experiment was performed in a genetic background carrying an activated Notch (Abruptex) allele. The phenotypes were almost completely rescued by this activated Notch allele. These results link peroxiredoxins with the in vivo function of Presenilin, which ultimately connects two key pathogenetic mechanisms in AD, namely, antioxidant activity and plaque formation, and raises the possibility of a role for peroxiredoxin family members in Alzheimer’s pathogenesis.

Keywords

Presenilin / Alzheimer’s disease / peroxiredoxin / Notch

Cite this article

Download citation ▾
Michael F. Wangler, Lawrence T. Reiter, Georgianna Zimm, Jennifer Trimble-Morgan, Jane Wu, Ethan Bier. Antioxidant proteins TSA and PAG interact synergistically with Presenilin to modulate Notch signaling in Drosophila. Prot Cell, 2011, 2(7): 554‒563 https://doi.org/10.1007/s13238-011-1073-7

References

[1] Artavanis-Tsakonas, S., Rand, M.D., and Lake, R.J. (1999). Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 10.1126/science.284.5415.770.
[2] Bier, E. (2005). Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6, 9–23 10.1038/nrg1503.
[3] Borchelt, D.R., Thinakaran, G., Eckman, C.B., Lee, M.K., Davenport, F., Ratovitsky, T., Prada, C.M., Kim, G., Seekins, S., Yager, D., (1996). Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 17, 1005–1013 10.1016/S0896-6273(00)80230-5.
[4] Boulos, S., Meloni, B.P., Arthur, P.G., Bojarski, C., and Knuckey, N.W. (2007). Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injury. J Neurosci Res 85, 3089–3097 10.1002/jnr.21429.
[5] Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 .
[6] Butler, A.W., Ng, M.Y., Hamshere, M.L., Forabosco, P., Wroe, R., Al-Chalabi, A., Lewis, C.M., and Powell, J.F. (2009). Meta-analysis of linkage studies for Alzheimer's disease--a web resource. Neurobiol Aging 30, 1037–1047 10.1016/j.neurobiolaging.2009.03.013.
[7] Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson-Wood, K., Lee, M., Seubert, P., Davis, A., (1997). Mutant presenilins of Alzheimer's disease increase production of 42- residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 3, 67–72 10.1038/nm0197-67.
[8] Crowther, D.C., Kinghorn, K.J., Miranda, E., Page, R., Curry, J.A., Duthie, F.A., Gubb, D.C., and Lomas, D.A. (2005). Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer's disease. Neuroscience 132, 123–135 10.1016/j.neuroscience.2004.12.025.
[9] De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J.S., Schroeter, E.H., Schrijvers, V., Wolfe, M.S., Ray, W.J., (1999). A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 10.1038/19083.
[10] Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C.M., Perez-tur, J., Hutton, M., Buee, L., Harigaya, Y., Yager, D., (1996). Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713 10.1038/383710a0.
[11] Duffy, J.B. (2002). GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34, 1–15 10.1002/gene.10150.
[12] Fox, N.C., and Schott, J.M. (2004). Imaging cerebral atrophy: normal ageing to Alzheimer's disease. Lancet 363, 392–394 10.1016/S0140-6736(04)15441-X.
[13] Gibson, G.E., Zhang, H., Sheu, K.R., and Park, L.C. (2000). Differential alterations in antioxidant capacity in cells from Alzheimer patients. Biochim Biophys Acta 1502, 319–329 .
[14] Goate, A., Chartier-Harlin, M.C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 10.1038/349704a0.
[15] Greeve, I., Kretzschmar, D., Tschape, J.A., Beyn, A., Brellinger, C., Schweizer, M., Nitsch, R.M., and Reifegerste, R. (2004). Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. J Neurosci 24, 3899–3906 10.1523/JNEUROSCI.0283-04.2004.
[16] Gu, F., Zhu, M., Shi, J., Hu, Y., and Zhao, Z. (2008). Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice. Neurosci Lett 440, 44–48 10.1016/j.neulet.2008.05.050.
[17] Guillen, I., Mullor, J.L., Capdevila, J., Sanchez-Herrero, E., Morata, G., and Guerrero, I. (1995). The function of engrailed and the specification of Drosophila wing pattern. Development 121, 3447–3456 .
[18] Haass, C., and De Strooper, B. (1999). The presenilins in Alzheimer's disease--proteolysis holds the key. Science 286, 916–919 10.1126/science.286.5441.916.
[19] Hattori, F., and Oikawa, S. (2007). Peroxiredoxins in the central nervous system. Subcell Biochem 44, 357–374 10.1007/978-1-4020-6051-9_17.
[20] Iijima, K., Liu, H.P., Chiang, A.S., Hearn, S.A., Konsolaki, M., and Zhong, Y. (2004). Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer's disease. Proc Natl Acad Sci USA 101, 6623–6628 10.1073/pnas.0400895101.
[21] Krapfenbauer, K., Engidawork, E., Cairns, N., Fountoulakis, M., and Lubec, G. (2003). Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res 967, 152–160 10.1016/S0006-8993(02)04243-9.
[22] Lahiri, D.K., and Greig, N.H. (2004). Lethal weapon: amyloid beta-peptide, role in the oxidative stress and neurodegeneration of Alzheimer's disease. Neurobiol Aging 25, 581–587 10.1016/j.neurobiolaging.2004.02.002.
[23] Leutner, S., Czech, C., Schindowski, K., Touchet, N., Eckert, A., and Muller, W.E. (2000). Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or multiple mutations. Neurosci Lett 292, 87–90 10.1016/S0304-3940(00)01449-X.
[24] Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D.M., Oshima, J., Pettingell, W.H., Yu, C.E., Jondro, P.D., Schmidt, S.D., Wang, K., (1995). Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977 10.1126/science.7638622.
[25] Liu, F., Arias-Vasquez, A., Sleegers, K., Aulchenko, Y.S., Kayser, M., Sanchez-Juan, P., Feng, B.J., Bertoli-Avella, A.M., van Swieten, J., Axenovich, T.I., (2007). A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population. Am J Hum Genet 81, 17–31 10.1086/518720.
[26] Marcum, J.L., Mathenia, J.K., Chan, R., and Guttmann, R.P. (2005). Oxidation of thiol-proteases in the hippocampus of Alzheimer's disease. Biochem Biophys Res Commun 334, 342–348 10.1016/j.bbrc.2005.06.089.
[27] Martins, R.N., Turner, B.A., Carroll, R.T., Sweeney, D., Kim, K.S., Wisniewski, H.M., Blass, J.P., Gibson, G.E., and Gandy, S. (1995). High levels of amyloid-beta protein from S182 (Glu246) familial Alzheimer's cells. Neuroreport 7, 217–220 .
[28] McLellan, M.E., Kajdasz, S.T., Hyman, B.T., and Bacskai, B.J. (2003). In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy. J Neurosci 23, 2212–2217 .
[29] Mehta, N.D., Refolo, L.M., Eckman, C., Sanders, S., Yager, D., Perez-Tur, J., Younkin, S., Duff, K., Hardy, J., and Hutton, M. (1998). Increased Abeta42(43) from cell lines expressing presenilin 1 mutations. Ann Neurol 43, 256–258 10.1002/ana.410430217.
[30] Montine, T.J., Neely, M.D., Quinn, J.F., Beal, M.F., Markesbery, W.R., Roberts, L.J. II, and Morrow, J.D. (2002). Lipid peroxidation in aging brain and Alzheimer's disease. Free Radic Biol Med 33, 620–626 10.1016/S0891-5849(02)00807-9.
[31] Nowotny, P., Gorski, S.M., Han, S.W., Philips, K., Ray, W.J., Nowotny, V., Jones, C.J., Clark, R.F., Cagan, R.L., and Goate, A.M. (2000). Posttranslational modification and plasma membrane localization of the Drosophila melanogaster presenilin. Mol Cell Neurosci 15, 88–98 10.1006/mcne.1999.0805.
[32] Oyama, F., Sawamura, N., Kobayashi, K., Morishima-Kawashima, M., Kuramochi, T., Ito, M., Tomita, T., Maruyama, K., Saido, T.C., Iwatsubo, T., (1998). Mutant presenilin 2 transgenic mouse: effect on an age-dependent increase of amyloid beta-protein 42 in the brain. J Neurochem 71, 313–322 10.1046/j.1471-4159.1998.71010313.x.
[33] Patenaude, A., Murthy, M.R., and Mirault, M.E. (2005). Emerging roles of thioredoxin cycle enzymes in the central nervous system. Cell Mol Life Sci 62, 1063–1080 10.1007/s00018-005-4541-5.
[34] Perry, G., Nunomura, A., Hirai, K., Zhu, X., Perez, M., Avila, J., Castellani, R.J., Atwood, C.S., Aliev, G., Sayre, L.M., (2002). Is oxidative damage the fundamental pathogenic mechanism of Alzheimer's and other neurodegenerative diseases? Free Radic Biol Med 33, 1475–1479 10.1016/S0891-5849(02)01113-9.
[35] Power, J.H., Asad, S., Chataway, T.K., Chegini, F., Manavis, J., Temlett, J.A., Jensen, P.H., Blumbergs, P.C., and Gai, W.P. (2008). Peroxiredoxin 6 in human brain: molecular forms, cellular distribution and association with Alzheimer's disease pathology. Acta Neuropathol 115, 611–622 10.1007/s00401-008-0373-3.
[36] Rogaev, E.I., Sherrington, R., Rogaeva, E.A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., Tsuda, T., (1995). Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 10.1038/376775a0.
[37] Rubin, G.M., and Spradling, A.C. (1982). Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 10.1126/science.6289436.
[38] Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T.D., Hardy, J., Hutton, M., Kukull, W., (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med 2, 864–870 10.1038/nm0896-864.
[39] Schott, J.M., Price, S.L., Frost, C., Whitwell, J.L., Rossor, M.N., and Fox, N.C. (2005). Measuring atrophy in Alzheimer disease: a serial MRI study over 6 and 12 months. Neurology 65, 119–124 10.1212/01.wnl.0000167542.89697.0f.
[40] Schuessel, K., Schafer, S., Bayer, T.A., Czech, C., Pradier, L., Muller-Spahn, F., Muller, W.E., and Eckert, A. (2005). Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice. Neurobiol Dis 18, 89–99 10.1016/j.nbd.2004.09.003.
[41] Selkoe, D.J. (2001). Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81, 741–766 .
[42] Shan, X., Tashiro, H., and Lin, C.L. (2003). The identification and characterization of oxidized RNAs in Alzheimer's disease. J Neurosci 23, 4913–4921 .
[43] Sherrington, R., Rogaev, E.I., Liang, Y., Rogaeva, E.A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 10.1038/375754a0.
[44] Smith, C.D., Carney, J.M., Tatsumo, T., Stadtman, E.R., Floyd, R.A., and Markesbery, W.R. (1992). Protein oxidation in aging brain. Ann N Y Acad Sci 663, 110–119 10.1111/j.1749-6632.1992.tb38654.x.
[45] Smith, M.A., Nunomura, A., Zhu, X., Takeda, A., and Perry, G. (2000). Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease. Antioxid Redox Signal 2, 413–420 10.1089/15230860050192198.
[46] Struhl, G., and Greenwald, I. (1999). Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 10.1038/19091.
[47] van de Hoef, D.L., Hughes, J., Livne-Bar, I., Garza, D., Konsolaki, M., and Boulianne, G.L. (2009). Identifying genes that interact with Drosophila presenilin and amyloid precursor protein. Genesis 47, 246–260 10.1002/dvg.20485.
[48] Van Gassen, G., Annaert, W., and Van Broeckhoven, C. (2000). Binding partners of Alzheimer's disease proteins: are they physiologically relevant? Neurobiol Dis 7, 135–151 10.1006/nbdi.2000.0306.
[49] Wolfe, M.S., Xia, W., Ostaszewski, B.L., Diehl, T.S., Kimberly, W.T., and Selkoe, D.J. (1999). Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398, 513–517 10.1038/19077.
[50] Xia, W., Zhang, J., Kholodenko, D., Citron, M., Podlisny, M.B., Teplow, D.B., Haass, C., Seubert, P., Koo, E.H., and Selkoe, D.J. (1997). Enhanced production and oligomerization of the 42-residue amyloid beta- protein by Chinese hamster ovary cells stably expressing mutant presenilins. J Biol Chem 272, 7977–7982 10.1074/jbc.272.12.7977.
[51] Ye, Y., and Fortini, M.E. (1999). Apoptotic activities of wild-type and Alzheimer's disease-related mutant presenilins in Drosophila melanogaster. J Cell Biol 146, 1351–1364 10.1083/jcb.146.6.1351.
[52] Ye, Y., Lukinova, N., and Fortini, M.E. (1999). Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398, 525–529 10.1038/19096.
[53] Zhou, Y., Zhang, W., Easton, R., Ray, J.W., Lampe, P., Jiang, Z., Brunkan, A.L., Goate, A., Johnson, E.M., and Wu, J.Y. (2002). Presenilin-1 protects against neuronal apoptosis caused by its interacting protein PAG. Neurobiol Dis 9, 126–138 10.1006/nbdi.2001.0472.
AI Summary AI Mindmap
PDF(644 KB)

Accesses

Citations

Detail

Sections
Recommended

/