[1] Artavanis-Tsakonas, S., Rand, M.D., and Lake, R.J. (1999). Notch signaling: cell fate control and signal integration in development.
Science 284, 770–776
10.1126/science.284.5415.770.
[2] Bier, E. (2005). Drosophila, the golden bug, emerges as a tool for human genetics.
Nat Rev Genet 6, 9–23
10.1038/nrg1503.
[3] Borchelt, D.R., Thinakaran, G., Eckman, C.B., Lee, M.K., Davenport, F., Ratovitsky, T., Prada, C.M., Kim, G., Seekins, S., Yager, D.,
(1996). Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo.
Neuron 17, 1005–1013
10.1016/S0896-6273(00)80230-5.
[4] Boulos, S., Meloni, B.P., Arthur, P.G., Bojarski, C., and Knuckey, N.W. (2007). Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injury.
J Neurosci Res 85, 3089–3097
10.1002/jnr.21429.
[5] Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.
Development 118, 401–415 .
[6] Butler, A.W., Ng, M.Y., Hamshere, M.L., Forabosco, P., Wroe, R., Al-Chalabi, A., Lewis, C.M., and Powell, J.F. (2009). Meta-analysis of linkage studies for Alzheimer's disease--a web resource.
Neurobiol Aging 30, 1037–1047
10.1016/j.neurobiolaging.2009.03.013.
[7] Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson-Wood, K., Lee, M., Seubert, P., Davis, A.,
(1997). Mutant presenilins of Alzheimer's disease increase production of 42- residue amyloid beta-protein in both transfected cells and transgenic mice.
Nat Med 3, 67–72
10.1038/nm0197-67.
[8] Crowther, D.C., Kinghorn, K.J., Miranda, E., Page, R., Curry, J.A., Duthie, F.A., Gubb, D.C., and Lomas, D.A. (2005). Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer's disease.
Neuroscience 132, 123–135
10.1016/j.neuroscience.2004.12.025.
[9] De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J.S., Schroeter, E.H., Schrijvers, V., Wolfe, M.S., Ray, W.J.,
(1999). A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain.
Nature 398, 518–522
10.1038/19083.
[10] Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C.M., Perez-tur, J., Hutton, M., Buee, L., Harigaya, Y., Yager, D.,
(1996). Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1.
Nature 383, 710–713
10.1038/383710a0.
[11] Duffy, J.B. (2002). GAL4 system in Drosophila: a fly geneticist's Swiss army knife.
Genesis 34, 1–15
10.1002/gene.10150.
[12] Fox, N.C., and Schott, J.M. (2004). Imaging cerebral atrophy: normal ageing to Alzheimer's disease.
Lancet 363, 392–394
10.1016/S0140-6736(04)15441-X.
[13] Gibson, G.E., Zhang, H., Sheu, K.R., and Park, L.C. (2000). Differential alterations in antioxidant capacity in cells from Alzheimer patients.
Biochim Biophys Acta 1502, 319–329 .
[14] Goate, A., Chartier-Harlin, M.C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L.,
(1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease.
Nature 349, 704–706
10.1038/349704a0.
[15] Greeve, I., Kretzschmar, D., Tschape, J.A., Beyn, A., Brellinger, C., Schweizer, M., Nitsch, R.M., and Reifegerste, R. (2004). Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila.
J Neurosci 24, 3899–3906
10.1523/JNEUROSCI.0283-04.2004.
[16] Gu, F., Zhu, M., Shi, J., Hu, Y., and Zhao, Z. (2008). Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice.
Neurosci Lett 440, 44–48
10.1016/j.neulet.2008.05.050.
[17] Guillen, I., Mullor, J.L., Capdevila, J., Sanchez-Herrero, E., Morata, G., and Guerrero, I. (1995). The function of engrailed and the specification of Drosophila wing pattern.
Development 121, 3447–3456 .
[18] Haass, C., and De Strooper, B. (1999). The presenilins in Alzheimer's disease--proteolysis holds the key.
Science 286, 916–919
10.1126/science.286.5441.916.
[19] Hattori, F., and Oikawa, S. (2007). Peroxiredoxins in the central nervous system.
Subcell Biochem 44, 357–374
10.1007/978-1-4020-6051-9_17.
[20] Iijima, K., Liu, H.P., Chiang, A.S., Hearn, S.A., Konsolaki, M., and Zhong, Y. (2004). Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer's disease.
Proc Natl Acad Sci USA 101, 6623–6628
10.1073/pnas.0400895101.
[21] Krapfenbauer, K., Engidawork, E., Cairns, N., Fountoulakis, M., and Lubec, G. (2003). Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders.
Brain Res 967, 152–160
10.1016/S0006-8993(02)04243-9.
[22] Lahiri, D.K., and Greig, N.H. (2004). Lethal weapon: amyloid beta-peptide, role in the oxidative stress and neurodegeneration of Alzheimer's disease.
Neurobiol Aging 25, 581–587
10.1016/j.neurobiolaging.2004.02.002.
[23] Leutner, S., Czech, C., Schindowski, K., Touchet, N., Eckert, A., and Muller, W.E. (2000). Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or multiple mutations.
Neurosci Lett 292, 87–90
10.1016/S0304-3940(00)01449-X.
[24] Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D.M., Oshima, J., Pettingell, W.H., Yu, C.E., Jondro, P.D., Schmidt, S.D., Wang, K.,
(1995). Candidate gene for the chromosome 1 familial Alzheimer's disease locus.
Science 269, 973–977
10.1126/science.7638622.
[25] Liu, F., Arias-Vasquez, A., Sleegers, K., Aulchenko, Y.S., Kayser, M., Sanchez-Juan, P., Feng, B.J., Bertoli-Avella, A.M., van Swieten, J., Axenovich, T.I.,
(2007). A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population.
Am J Hum Genet 81, 17–31
10.1086/518720.
[26] Marcum, J.L., Mathenia, J.K., Chan, R., and Guttmann, R.P. (2005). Oxidation of thiol-proteases in the hippocampus of Alzheimer's disease.
Biochem Biophys Res Commun 334, 342–348
10.1016/j.bbrc.2005.06.089.
[27] Martins, R.N., Turner, B.A., Carroll, R.T., Sweeney, D., Kim, K.S., Wisniewski, H.M., Blass, J.P., Gibson, G.E., and Gandy, S. (1995). High levels of amyloid-beta protein from S182 (Glu246) familial Alzheimer's cells.
Neuroreport 7, 217–220 .
[28] McLellan, M.E., Kajdasz, S.T., Hyman, B.T., and Bacskai, B.J. (2003). In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy.
J Neurosci 23, 2212–2217 .
[29] Mehta, N.D., Refolo, L.M., Eckman, C., Sanders, S., Yager, D., Perez-Tur, J., Younkin, S., Duff, K., Hardy, J., and Hutton, M. (1998). Increased Abeta42(43) from cell lines expressing presenilin 1 mutations.
Ann Neurol 43, 256–258
10.1002/ana.410430217.
[30] Montine, T.J., Neely, M.D., Quinn, J.F., Beal, M.F., Markesbery, W.R., Roberts, L.J. II, and Morrow, J.D. (2002). Lipid peroxidation in aging brain and Alzheimer's disease.
Free Radic Biol Med 33, 620–626
10.1016/S0891-5849(02)00807-9.
[31] Nowotny, P., Gorski, S.M., Han, S.W., Philips, K., Ray, W.J., Nowotny, V., Jones, C.J., Clark, R.F., Cagan, R.L., and Goate, A.M. (2000). Posttranslational modification and plasma membrane localization of the Drosophila melanogaster presenilin.
Mol Cell Neurosci 15, 88–98
10.1006/mcne.1999.0805.
[32] Oyama, F., Sawamura, N., Kobayashi, K., Morishima-Kawashima, M., Kuramochi, T., Ito, M., Tomita, T., Maruyama, K., Saido, T.C., Iwatsubo, T.,
(1998). Mutant presenilin 2 transgenic mouse: effect on an age-dependent increase of amyloid beta-protein 42 in the brain.
J Neurochem 71, 313–322
10.1046/j.1471-4159.1998.71010313.x.
[33] Patenaude, A., Murthy, M.R., and Mirault, M.E. (2005). Emerging roles of thioredoxin cycle enzymes in the central nervous system.
Cell Mol Life Sci 62, 1063–1080
10.1007/s00018-005-4541-5.
[34] Perry, G., Nunomura, A., Hirai, K., Zhu, X., Perez, M., Avila, J., Castellani, R.J., Atwood, C.S., Aliev, G., Sayre, L.M.,
(2002). Is oxidative damage the fundamental pathogenic mechanism of Alzheimer's and other neurodegenerative diseases?
Free Radic Biol Med 33, 1475–1479
10.1016/S0891-5849(02)01113-9.
[35] Power, J.H., Asad, S., Chataway, T.K., Chegini, F., Manavis, J., Temlett, J.A., Jensen, P.H., Blumbergs, P.C., and Gai, W.P. (2008). Peroxiredoxin 6 in human brain: molecular forms, cellular distribution and association with Alzheimer's disease pathology.
Acta Neuropathol 115, 611–622
10.1007/s00401-008-0373-3.
[36] Rogaev, E.I., Sherrington, R., Rogaeva, E.A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., Tsuda, T.,
(1995). Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene.
Nature 376, 775–778
10.1038/376775a0.
[37] Rubin, G.M., and Spradling, A.C. (1982). Genetic transformation of Drosophila with transposable element vectors.
Science 218, 348–353
10.1126/science.6289436.
[38] Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T.D., Hardy, J., Hutton, M., Kukull, W.,
(1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease.
Nat Med 2, 864–870
10.1038/nm0896-864.
[39] Schott, J.M., Price, S.L., Frost, C., Whitwell, J.L., Rossor, M.N., and Fox, N.C. (2005). Measuring atrophy in Alzheimer disease: a serial MRI study over 6 and 12 months.
Neurology 65, 119–124
10.1212/01.wnl.0000167542.89697.0f.
[40] Schuessel, K., Schafer, S., Bayer, T.A., Czech, C., Pradier, L., Muller-Spahn, F., Muller, W.E., and Eckert, A. (2005). Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice.
Neurobiol Dis 18, 89–99
10.1016/j.nbd.2004.09.003.
[41] Selkoe, D.J. (2001). Alzheimer's disease: genes, proteins, and therapy.
Physiol Rev 81, 741–766 .
[42] Shan, X., Tashiro, H., and Lin, C.L. (2003). The identification and characterization of oxidized RNAs in Alzheimer's disease.
J Neurosci 23, 4913–4921 .
[43] Sherrington, R., Rogaev, E.I., Liang, Y., Rogaeva, E.A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K.,
(1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease.
Nature 375, 754–760
10.1038/375754a0.
[44] Smith, C.D., Carney, J.M., Tatsumo, T., Stadtman, E.R., Floyd, R.A., and Markesbery, W.R. (1992). Protein oxidation in aging brain.
Ann N Y Acad Sci 663, 110–119
10.1111/j.1749-6632.1992.tb38654.x.
[45] Smith, M.A., Nunomura, A., Zhu, X., Takeda, A., and Perry, G. (2000). Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease.
Antioxid Redox Signal 2, 413–420
10.1089/15230860050192198.
[46] Struhl, G., and Greenwald, I. (1999). Presenilin is required for activity and nuclear access of Notch in Drosophila.
Nature 398, 522–525
10.1038/19091.
[47] van de Hoef, D.L., Hughes, J., Livne-Bar, I., Garza, D., Konsolaki, M., and Boulianne, G.L. (2009). Identifying genes that interact with Drosophila presenilin and amyloid precursor protein.
Genesis 47, 246–260
10.1002/dvg.20485.
[48] Van Gassen, G., Annaert, W., and Van Broeckhoven, C. (2000). Binding partners of Alzheimer's disease proteins: are they physiologically relevant?
Neurobiol Dis 7, 135–151
10.1006/nbdi.2000.0306.
[49] Wolfe, M.S., Xia, W., Ostaszewski, B.L., Diehl, T.S., Kimberly, W.T., and Selkoe, D.J. (1999). Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity.
Nature 398, 513–517
10.1038/19077.
[50] Xia, W., Zhang, J., Kholodenko, D., Citron, M., Podlisny, M.B., Teplow, D.B., Haass, C., Seubert, P., Koo, E.H., and Selkoe, D.J. (1997). Enhanced production and oligomerization of the 42-residue amyloid beta- protein by Chinese hamster ovary cells stably expressing mutant presenilins.
J Biol Chem 272, 7977–7982
10.1074/jbc.272.12.7977.
[51] Ye, Y., and Fortini, M.E. (1999). Apoptotic activities of wild-type and Alzheimer's disease-related mutant presenilins in Drosophila melanogaster.
J Cell Biol 146, 1351–1364
10.1083/jcb.146.6.1351.
[52] Ye, Y., Lukinova, N., and Fortini, M.E. (1999). Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants.
Nature 398, 525–529
10.1038/19096.
[53] Zhou, Y., Zhang, W., Easton, R., Ray, J.W., Lampe, P., Jiang, Z., Brunkan, A.L., Goate, A., Johnson, E.M., and Wu, J.Y. (2002). Presenilin-1 protects against neuronal apoptosis caused by its interacting protein PAG.
Neurobiol Dis 9, 126–138
10.1006/nbdi.2001.0472.